
 Advanced search

Linux Journal Issue #16/August 1995

Features

HTML Forms: Interacting with the Net by Eric Kasten
How to create interactive HTML forms.

Linux Goes to Sea by Randolph Bentson
Stephen Harris tells how he uses Linux for ship-to-shore
communication.

Introduction to Lisp-Stat by Balasubramanian Narasimhan
Efficient, User-Friendly Seismology by Sid Hellman

News & Articles

Prototyping Algorithms in Perl by Jim Shapiro
Putting Widgets in Their Place by Stephen Uhler
The Trade Shows by Randolph Bentson and Arnold Robbins
What's GNU? GNU Coding Standards by Arnold Robbins

Reviews

Book Review SendMail by Phil Hughes

Columns

Letters to the Editor
Stop the Presses by Michael K. Johnson
Novice to Novice : Interlude & Explorations: Spreadsheets & Text
Editors by Dean Oisboid
New Products

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1111.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1103.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1117.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1128.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1135.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/0073.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/0074.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1139.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1132.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1132.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/0075.html

Kernel Korner Memory Allocation by Michael K. Johnson

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/016/1133.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

HTML Forms: Interacting with the Net

Eric Kasten

Issue #16, August 1995

In this last of three articles on the World Wide Web, Eric discusses how to
create interactive HTML forms, which allow you to collect data and interact with
users as well as serve documents.

You have set up a World Wide Web server, and now have a number of HTML
(hypertext markup language) documents for web-surfing visitors to enjoy.
You're comfortable with HTML, and are ready to find new things for your server
to do. In your network travels, you remember filling out some electronic forms
to give feedback to the creator of one of your favorite home pages.

This article will help you acquire the basic knowledge needed to write HTML
forms, and explains what needs to be done so that you and your server can
interact with your Web visitors.

Elements of a Form

A working form really consists of three basic elements. The first is the form
itself. The form is constructed using HTML text, as for your homepage, with a
few different markup tags. The second element is the script or program. This
program must be constructed in accordance with the common gateway
interface (CGI) specification, if it is to communicate properly with your server
and the user's Web client. The CGI script is the engine behind the interface; it
will actually act on the data the user types into the form. The third element is
the httpd (hypertext transfer protocol daemon) server, which calls the CGI
program, passing it the data the user has entered.

Let's take a look at what elements a form can posses. Much like other HTML
constructs, forms are built using markup tags and simple text. A form is
encapsulated by <FORM>...</FORM>, where the ... is replaced by text and other
form markups. Keep in mind that markup tags are case insensitive, though I will

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

continue to capitalize them for clarity. Following is a list and descriptions of the
major available form markup tags.

<FORM>...</FORM>
Indicates the start and end of an HTML form.

<INPUT>...</INPUT>
Indicates the start and end of form input.

<SELECT>...</SELECT>
Indicates the start and end of a selection list.

<TEXTAREA>...</TEXTAREA>
Indicates the start and end of a free-form text input area.

FORM Markup Tag

Form markup tags may use attributes to help control how a form will be
displayed to the user. Let's take each markup tag in turn, and examine the valid
attributes for each. First let's look at the FORM tag.

ACTION

Typically a URL indicating a script or program to be executed.

METHOD

Valid values are POST and GET.

The ACTION attribute specifies a URL (uniform resource locator) which will be
used to carry out some action based on what is entered in the form. The URL
usually specifies a program, which exists in a script directory on the server. For
instance, http://some.server/cgi-bin/donothing.sh will result in the form data
being returned to the program donothing.sh for processing. The program will
then return an appropriate response to the client.

The METHOD attribute is used to specify how the data which is entered into the
form is to be returned to the server. The data may be appended to the URL
specified by the action attribute using the GET method. When the GET method
is used, the http server will pass the information to the ACTION program
encoded in an environment variable. When the POST method is used, the http
server will pass the information to standard input.

<FORM ACTION="http://www.you.org/cgi-bin/donothing.sh" METHOD=POST>

begins the definition of a form which is processed by the donothing.sh script on
the current host, which reads data from its standard input.

INPUT Tag

The INPUT tags are used to specify fields where data can be entered by the
user. This tag, like all of the remaining form markup tags, must appear between
a <FORM> tag and its associated </FORM> tag. Following is a list of valid
attributes.

NAME

Indicates a symbolic name for the input field. The ACTION program uses
this to differentiate fields.

TYPE

Specifies the type, such as checkbox or radio button, that is to be used.

VALUE

This gives a default value for the input field.

CHECKED

A boolean indication of status for elements such as checkboxes.

SIZE

The physical display size of text entry fields.

MAXLENGTH

The maximum allowable number of input characters for text entry fields.

The NAME of an INPUT field allows fields to be differentiated or grouped. The
name of a field is used by the ACTION program to determine what a user
entered in each field of the form. The NAME attribute is also used to establish
logical groupings of some form element types, specifically radio buttons.

Valid settings for the TYPE attribute are checkbox, text, password, radio,
hidden, reset and submit. A checkbox is an element which can take on one of
two states, either checked or not checked. This provides a basic boolean true or
false element for form entry. The text element provides a single-line text entry
field in which the user can enter data. A password field is a text entry field in
which the entered text is hidden from view in some fashion.

Radio buttons are groups of buttons which allow a single button to be toggled
at a time. The other buttons in the group are untoggled when one button of the
group is selected. A radio button group is established by setting the NAME

attribute for each button in the group to the same value.

A hidden input is not displayed to the user at all, and the user cannot modify it.
A hidden input encodes state information into the form. For instance, it might

be possible to have one form which should be processed in different ways,
depending on context. Each instance of the form could include hidden input
indicating the context and directing the processing appropriately.

Of particular note are the submit and reset input types. Clicking on submit

causes the form contents to be transmitted to the server, and then to the
ACTION program for processing. The reset button causes the form elements to
be set to their initial values, allowing the user to easily return the form to its
initial state.

A default value for a form element can be specified using the VALUE attribute.
For text entry elements, this indicates a default string of characters that are
initially present when the form is retrieved. If the field is a radio button, this is
the value the element takes on when it is checked (when the element isn't
checked, it has no value). For the submit and reset elements, the VALUE

attribute can be used to set the button label.

The CHECKED attribute is valid only for the checkbox and radio elements. If the
CHECKED attribute is present, the radio button or checkbox is toggled by
default. Setting the physical length of a text entry field can be done by using the
SIZE attribute.

The MAXLENGTH attribute limits the number of characters that are accepted in
a particular text entry field.

SELECT Tag

SELECT is the next major markup tag. The SELECT tag is used to encapsulate a
selection list. Several <OPTION> tags may be included between a <SELECT> and
a </SELECT>, to add elements to the list. A selection list may take on two
physical forms. If it has a SIZE of one, it appears as a popup menu. If the SIZE

attribute is greater than one, it appears as a scrollable list displaying SIZE

options one at a time. Here are the possible attributes of the SELECT tag:

NAME

Indicates a symbolic name for the selection menu.

SIZE

The physical number of lines that are visible at any time.

MULTIPLE

If this attribute is present, multiple items of the list may be selected at one
time.

These attributes are straightforward, and I'll leave them for your exploration
later. Before we move on, I should mention a little more about the <OPTION>

tag. The option tag can have the attribute SELECTED. When present, this
attribute indicates that a particular list item is selected by default. The
<OPTION> tag is much like the of normal HTML lists; it does not require a
terminating </OPTION> tag. Instead, the appearance of an <OPTION> tag
indicates the beginning of a new list item and the termination of any preceding
items. Also, a selection list item can be only simple text. List items cannot be
marked up, nor can they be anchored items.

TEXTAREA Tag

A form element where a user can type in free-form text, much like entering text
into an editor, is constructed using the TEXTAREA tag. A text entry area is has
the basic form of:

<TEXTAREA>default text</TEXTAREA>

The default text is the initial text, if any, which is present in the text entry
area. This form element has three easy-to-use attributes.

NAME

Indicates a symbolic name for the selection menu.

ROWS

The vertical size of the text entry area.

COLS

The horizontal size of the text entry area.

Assembling the Pieces

Listing 1. A Simple HTML Form

Now that we know what things we have available, let's create a basic form.
Listing 1 shows a simple HTML form, while Figure 1(139K) displays how Mosaic
might present this form.

Keep in mind that the ACTION attribute needs to specify your host and a valid
script or program. In the example, the shell script echo.sh (shown later) will be
executed on your.http.host when the form is submitted. The script or program
needs to reside in a directory which your server recognizes as a valid location
for executable programs. Be sure to check the documentation for your server
to be sure it is configured properly to allow for this sort of execution. A typical

https://secure2.linuxjournal.com/ljarchive/LJ/016/1096l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096f1.jpg

location for these sorts of programs is in the cgi-bin directory under the server
root, and that is how this example is configured.

Interacting with the Client

The form is only one of the three parts necessary to interact with a user. The
second is the http server, which we will not cover here (please refer to the
documentation for your server). The third is a CGI program or script. As
mentioned above, these programs must reside in a directory recognized by the
http server as a valid location for executables. A CGI program needs to be able
to understand the encoded form data as it is returned from a client, and must
be able to respond appropriately. The encoded form data will appear either on
the command line or in the environment variable QUERY_STRING, depending
on whether a METHOD of GET or POST is used. Typically, a program needs only
write the necessary response on stdout, and the response will then be
transmitted back to the client by the http daemon.

A number of environment variables are also typically set by the server for the
CGI program's use. Following is a partial list of environment variables that I find
useful. Please refer to hoohoo.ncsa.uiuc.edu/cgi/env.html for further discussion
of other environment variables.

REQUEST_METHOD

Set to the METHOD used to make the request.

QUERY_STRING

Set to the encoded form data when the GET METHOD is used.

REMOTE_HOST

Set to the remote hostname if available.

REMOTE_ADDR

Set to the IP address of the remote host.

CONTENT_LENGTH

The length of the data returned in a client's query.

Usually, a CGI program need only respond to a request with an appropriate
http header, possibly followed by a document. The response is simply written
on stdout, where the data will be returned to the client. A header consists of an
http header directive followed by a relevant text string. The header is
terminated by a blank line. Two of the most used header directives are the
Content-type and Location directives. The Content-type directive indicates the
type of data which is to follow. For example, Content-type: text/html indicates
that the document which follows the header on stdout is written in HTML. The

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Location directive is used to provide a means by which redirection can take
place. For instance, Location: http://goto.another.host/web/doc.html would
cause a client to retrieve the document specified in the URL.

Probably the easiest way to explore the construction of a CGI program is with
an example. Listing 2 shows a shell script which will respond to a client's HTML
form request.

Listing 2

The response is to echo the encoded query, some of the environment variables,
and the decoded content of the query. This program is useful as a test program
when creating new forms, and as a base for building other CGI scripts. Figure
2(135K) displays the results of posting the form shown in Figure 1 to this script.

Examine the QUERY_STRING in Figure 2 Notice that spaces are encoded as
addition signs, and that an ampersand in the input is encoded as a hex value
preceded by a percent sign. Also notice that each name/value pair is separated
by an ampersand. The shell script decodes this string back into the data as it
was entered by the user. There are other programs, such as CERN's cgiparse,
which will also help you decode CGI form data.

Conclusion

You now should have the basic building blocks of form construction and
processing at hand. Many things which can be done with HTML forms and CGI
programs, including providing man pages via http or constructing gateways for
accessing other system information. Good luck, and have fun!

Resources

Eric Kasten has been a systems programmer since 1989. Presently he is
pursuing his masters in computer science at Michigan State University, where
his research focuses on networking and distributed systems. Well-thought-out
comments and questions may be directed to him at
tigger@petroglyph.cl.msu.edu. You may also visit his home page at
petroglyph.cl.msu.edu/~tigger.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/016/1096l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1096s1.html
mailto:tigger@petroglyph.cl.msu.edu
http://petroglyph.cl.msu.edu/~tigger
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Goes to Sea

Randolph Bentson

Issue #16, August 1995

An Interview with Stephen Harris.

Randolph: What is your background and how did you learn of Linux?

Steven: I attended St. Peters College, Oxford University, 1987-1990, studing the
joint honours school of Mathematics and Computation. This is where I was first
exposed to Unix (Sun3 with SunOS 3.5, and High Level Hardware Orions under
BSD 4.2 with some 4.3 extensions).

In summer 1990 I joined Papachristidis Ltd. (who do the administrative and
agency functions for Hellespont Group) as one of a team of three. Various
organisational changes mean I'm in charge of the whole lot now...

The Hellespont Group is a Greek shipping company, based in Piraeus, running a
number of ULCC (Ultra Large Crude Carrier) and VLCC (Very Large Crude
Carrier) oil tankers—some of the largest ships on the ocean, trading worldwide.
There is an office in London as well, and the two offices are connected by an
analogue leased line providing two speech and four data circuits. In the offices
we run a network of Unix machines, with the users accessing the machine via
dumb terminals (e.g. DEC VT320) and terminal servers. Our primary interface is
simply users running vi and creating roff documents. Admittedly, not the most
user-friendly of interfaces, but highly flexible and capable of being run on many
Unix systems. On top of this we have written a large variety of shell scripts and
C programs, also highly portable, and a well-defined file tree which determines
where reports and files are to be stored, matching the hard-copy filing.

Back in Novemeber 1991 I had just got Interactive Unix disks (a real old version)
and had installed it on my 386DX-20, when I heard in one of the comp.unix
groups about a free Unix clone and a reference to alt.os.linux. I quickly found
out where the kernel was, and downloaded Linus' root and boot disks. I was
impressed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Randolph: It's clear that you enjoy working with Linux. How did you persuade
your firm to consider Linux?

Stephen: I showed the early Linux version to my Greek and American
colleagues, who weren't impressed. I passed through 0.11 and 0.12 kernels
when Owen LeBlanc's MCC-Interim Release 0.95 came out. 5 disks with a
working Unix on them! Threw away Interactive (which never worked properly)
and installed Linux. Peter MacDonald came out with his SLS package and I
spent a fortune on phone bills downloading the disks.

At this stage the shipboard project was being planned around Sun Sparc
systems (one per ship with VT terminals). My colleagues didn't think Linux was
capable. SLS changed their minds, so I have Peter to blame (thank!) for
convincing them. I offered to make copies of SLS available for people in the UK
who couldn't afford to download it themselves, and Adam Richter sent me an
Yggdrassil CD free. Now that I had the source code I built my own setup, which
meant I could get around some of the problems SLS had.

From there it was a small step to experimenting in the office, installing a small
Linux system on my desk, and determining if it could be used. Except for a few
network problems (packet storms), it all worked quite well.

Randolph: Can you tell us more about how Linux is used on board?

Stephen: Firstly, the system now deals with 90% of the typed communications
between ship and shore. Using software on the office hub, messages can be
sent to the office and relayed out to third parties, using the much cheaper
landlines. Frequently, one message is sent to multiple parties, so now the ship
simply sends one message to the office and the computer automagically sends
it to all the other recipients. Of course, the office doesn't just have telex either,
and uses many alternatives, but that's another story.

Next, ship's reports can be created on the system, and printed, filed, sent to the
office very easily. Similarly, reports and procedures written in the office can be
distributed in source form to the ships for printing and local storage, making it
an easy way to update manuals.

We are now sending more traffic than we were before installing the system, but
the increase has had minimal cost effect compared to our savings... When we
first installed fax machines onboard (many years ago) we initially saw a
reduction in cost since fax was cheaper than telex, but then costs exploded
when everything was faxed (even things that don't require it). Contrarily, the
email system actually takes traffic away from fax (sending data as fixed-format
email rather than fax) which has helped reduce costs more! We anticipate costs

to rise slightly above the current level (to nowhere near the previous one!) as
we send more data, but this should improve efficiency and the ability of the
office to monitor shipside better, and so is an overall gain.

Spares and inventory control has been done on one of the ships—the complete
parts list from the ship's plans has been entered, allowing an easy search for
the official specifications when needing to order replacement parts and so on.

Requisitions (spares, stores, etc) are already handled by a structured document
that is parsed by a script and printed in the office, instead of needing to fax the
document from ship to shore.

The possibilities are endless.

Randolph: What was involved in installing this on board?

Stephen: At the time we had a ship in drydock just outside Lisbon, so that was
the perfect ship to test on. The ship wasn't going anywhere, and we had access
to landside facilities in case we forgot something!

The initial design called for a computer and five terminals, which would be
placed in strategic locations in the ship (Captains office, Chief Engineers, Ships
Library, Cargo Control Room, and Engine Control Room) allowing access to the
main system for those that needed it. Wiring through the ship was done with
unshielded twisted pair (3 pair) cables, terminating in RJ12 connectors, with two
sets of wire to each location. The main unit was placed in the Radio Room. The
wiring was chosen because it meant that the same wires could be used for
telephones, 10baseT ethernet, or serial cables, simply by making the correct
modular cables.

Installation was pretty straight forward. My American colleague, also onboard
with me, had spent the previous week buying and fitting together the
hardware, and making sure it was actually capable of booting a minimal
system. I also had my notepad running Linux, so I could build an emergency
boot floppy set if everything failed with the tape.

This was the beginning of a daily find bug / fix bug cycle that lasted through the
two weeks we were onboard. While I did this, my colleague installed the
working files to make the file tree look identical to that in the office. The end
result was a system that looked very close to that running in the office—on the
vastly more expensive Sun's.

After this, we left the ship to purchase some new equipment, some different
modems, and so on, with plans to return a month later before the ship left
dock.

When we returned, we replaced the terminals with smaller Linux systems, so
the setup we now have is a central 486DX2-66 and three client machines, all
running X and NFS'd together. The central server acts as communications and
printer server for the network. To cope with a failure of the server machine a
simple script was developed to change some of the main configuration files on
one of the clients so that it acts as the server. Admittedly a server without any
of the user files, but enough that the communications can be continued, and
some simple work can be done.

We have since installed a similar system on a further five ships, this time using
only 486SX-33 VLB machines (with VESA graphics) as clients; machine prices
dropped to a level that it didn't make sense to use any with less power!

Randolph: What kinds of special problems do you find on board?

Stephen: A ship is one of the most electrically noisy environments I can think of,
but only the longest cable produced noise—and then only when left unplugged
from the terminal! We were quite impressed that the serial cables worked over
such a large distance.

Power for the system is also problem: the ships generate their own power:
220V at 60Hz. To cope with this, we bought American equipment, and had a
transformer to convert from 220 to 110V. We had a Triplite UPS to cope with
the inevitible power fluctuations, and an Isobar to try and cope with any surges.
A week earlier, another ship's generator went overspeed and shot over 660V
through the mains—not something I wanted to risk on the PC!

Connecting the modem to the system was a lot of hard work. (When in range of
shore stations we use cellular phones and when at sea we use the satellite
based voice communication system Inmarsat A.) This wasn't the fault of Linux
though! The main problem was the modem. Eventually we got reliable
connections using Taylor UUCP. Using the 'g' protocol we could get 300+ cps
average throughput. Not good compared to what v32 should be able to do, but
a lot better than telex! When we upgraded the office Suns to use Taylor UUCP
we managed to get 600+ cps average throughput using the 'i' protocol. The ship
polls the office at four fixed times a day (different ships have different times to
cut down on collisions).

Randolph: How do you administer these distant systems?

Stephen: Basically we give the radio officers some intensive training in the
office on a system configured the same as the server. We show them how to
perform basic admin tasks, such as backups, rebooting, sending email, and so
on. They are also shown the hardware, how to reseat cards, and so on. A big
problem on the ship is vibration, and so we expect more hardware problems
than software. That, along with scripts and cron jobs, copes with most of the
forseable problems. For the others...well, I'm only a phone call away!

In fact, from the problems we have had so far, our expectation of hardware
failure being the biggest problem seems correct. One PC failed with a bad
power supply (luckily this was on the first ship in the month we were upgrading
the modems and so on, so we set up a new server and put that onboard at the
same time). One laser printer failed to feed properly. One Boca board port
blew. But the hardware is cheap and spares can be sent to a port where the
ship is due, and the radio officers can perform the physical swap out. Only one
software problem has occured (and unfortunately recurs because I haven't
found a fix yet—printer daemons on slaves sometimes “stick”).

Randolph: What are your plans for future development?

Stephen: Well, we are still building the network. We consider the configuration
to be a success and are planning to add a similar configuration to our
remaining ships.

The office communications hub has recently been replaced with a Linux server
that now routes most messages for the group, including our external email
connections. A longer-term plain is to upgrade the office, replacing the dumb
terminals with networked Linux machines.

One thing we will not do is “version chase”. The kernel and libraries we are
using are out of date. But while it is doing what we want adequately there is no
need to upgrade. If I did, then I would spend most of my time sending updates
to the ships and doing little else!

Linux has proven itself extremely reliable. The cheapness of the hardware has
meant that we could and did build a network onboard the ships vastly superior
to one that would have been made based around Sun equipment. The extra
facilties of email over telex, and the relative cheapness of the connection has
meant that shipboard data can be sent to the office in a more usable form.

Since Inmarsat A costs are approximate US $1 for 6 seconds, message size
becomes an important consideration! We want to develop a system that is 8 bit
clean, allows routing of traffic via various media (direct uucp logins, internet
email, modem dialup etc) and provides a sophisticated “receipt” system so the

sender knows when the message has reached the destination (e.g. we don't
want the ship to generate a receipt because it will cause extra ship-shore traffic
(expensive) so the shore based hub will generate it once it knows the ship has
collected it). Because all routing will be by my software, it can ensure the
message survives whatever the transport restrictions are—e.g. with direct uucp
it could gzip the file for sending, email it could uuencode, etc.

Randolph: When can I get a tour? I live in Seattle.

Stephen: Our ships (when they go to the USA) are mainly the other side—
Galveston (for lightering, so they're offshore and you'd need helicoptor ride to
reach them) and LOOP (Louisiana Offshore Oil Port—not easy to get to), so a
tour of the ship is highly unlikely, I'm afraid. Of course, most of the time they
spend away from any visible land travelling across the Atlantic Ocean, but
sometimes they go to European ports (e.g. Rotterdam's Europort).

Randolph: Besides sending Linux to sea, what other claims to fame can you
make?

Stephen: I'm the originator of the “I hate Linus Torvalds” thread in c.o.l where I
said I hated him for making me upgrade my PC so I could run the excellent OS
he had written (and was flamed by lots of people who never read the second
page! Linus recognised it as a joke thankfully!)

I never did get round to sending him the postcard that was requested in the
early release notes...

Randy Bentson has been programming for money since 1969—writing more
tasking kernels in assembly code than he wants to admit. His first high-level
language operating system was the UCSD P-system. For nearly 14 years he has
been working with UNIX and for the last year he's been enjoying Linux. Randy is
the author of the Linux driver for the Cyclades serial I/O card.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introduction to Lisp-Stat

Balasubramanian Narasimhan

Issue #16, August 1995

If you do heavy-duty statistical computing and have been looking for a powerful
statistical package that runs under Linux, Lisp-Stat may be just what you need.

Although I installed Linux on a 80 Meg partition on my Gateway 33Mhz PC over
a year ago, I really did not make serious use of Linux for my scientific work,
mostly because I lacked disk space. Recently, I bought a new 1-Gig drive and
that excuse went away. So I decided to install Lisp-Stat, a program that I use
most for my statistical Computing.

Written by Luke Tierney at the University of Minnesota, Lisp-Stat is a powerful,
interactive, object-oriented statistical computing environment based on the the
Xlisp dialect of Lisp. It runs on under Microsoft Windows, Macs, and Unix based
X11 systems almost uniformly. It has good graphical facilities for both static and
dynamic graphics along with functions for common statistical computations.

Furthermore, using the foreign function interface, one can call C and Fortran
programs from within Lisp-Stat. A byte-code compiler is available to speed up
your programs once you have debugged them. Of course, one needn't use Lisp-
Stat for statistical computing alone; I routinely use for all kinds of things: as a
calculator, for figuring out grades of my students, as an engine for hypertext
illustrations as well as matrix manipulations.

In this article, I will introduce you to some of the capabilities of Lisp-Stat.
Although I use Lisp in this article, I will not get into the details of Lisp
programming unless it impinges on our discussion. If you are new to Lisp, you
might want to read article on Scheme by Robert Sanders, Linux Journal, March
1995, as Lisp and Scheme are closely related. Some of the comments I make
apply actually to Lisp, but it serves no useful purpose to delineate what is the
Lisp and what is the Stat part. You need not know Lisp to use any of the
examples or to follow the article. If you get seriously interested in Lisp-Stat you
should probably get a copy of Tierney's book titled Lisp-Stat, ISBN

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

0-471-50916-7, published by John Wiley. Besides being the canonical reference
for Lisp-Stat, it provides a quick and practical introduction to Lisp.

Figure 1: An example of a Lisp-Stat session

A Quick Tour

Assuming that you have installed Lisp-Stat successfully, just type xlispstat to
invoke the program. To quit the program, just type (exit). Figure 1 shows a
simple session. Case does not matter and the > you see in the figure is Lisp-
Stat's prompt. The data I have used is the number of requests a WWW server
honored during each of the 24 hours in a day. The def macro binds a variable
name requests to the list of values.

As the example shows, calculation of summary statistics like the mean and
standard deviation are trivial. Since Lisp-Stat is based on Lisp, you have all the
power of Lisp for data manipulation. A rich set of data types is available
including vectors, sequences, strings, matrices. In figure 1 the variable A is
defined to be a 3x3 matrix and B is a list of three numbers. The example solves
Ax=b for x by computing A<+>-1<+>b yielding the solution [2, -6, 1]. Note that b
is a list while A<+>-1<+> is a matrix, yet the Lisp interpreter takes care of the
types and in effect computes the product of a matrix and a vector.

Many of Lisp-Stat's functions operate on sequences which may be lists or
vectors and they are vectorized, meaning that these functions can be applied to
arguments that are lists and the result is a list of the results of applying the
function to each element of the list. Some other functions are vector reducing,
meaning that they can be applied to a list of arguments but they return a single
number. In figure 1, the function mean is an example of a vector-reducing
function; it treated the list of lists as a single long list and returned the mean of
the long list. On the other hand, the function normal-cdf is a vectorized function
and invoking it on a list of three numbers produces a list of three answers. Of
course, if we do wish mean to behave in a vectorized fashion, the statement
(mapcar #'mean (list (normal-rand 10) (normal-rand 20))) will do it.

Figure 2: A histogram and a Line Plot

A picture is worth a thousand words, particularly in statistics. Lisp-Stat boasts
excellent graphical tools. The graphical system is based on an object-oriented
paradigm. Functions that create graphical windows or plots return an object as
the result. The returned object is just another data type much like a number or
a list and it can be used in appropriate computations.

https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f2.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f2.html

Commonly used graphical functions are histogram for constructing histograms,
plot-points for plotting (x,y) pairs, plot-lines for joining (x,y) pairs by means of
lines, plot-function for plotting a function of one variable, spin-function for
plotting a function of two variables, and spin-plot for 3-d plots.

All the spin functions provide controls for yawing, pitching and rolling in the
graph they create. Figure 2 shows a plot of the number of requests versus each
of the 24 hours. The plots were produced using the following lines of code.

(histogram requests)
(def time (iseq 24))
(plot-lines time requests)
(send * :add-points time requests)
(send ** :point-symbol (iseq 24) 'diamond)

Just drawing the lines alone is less than satisfactory since the exact location of
the points is lost. So, after constructing the plot, we send a “message” to the
plot using the send function asking the object to add-points to the graph
resulting in the graph shown. The * in the send function refers to the result of
the previous command, i.e., the plot object. The ** refers to the result of the
command before the previous one. In the example, I have asked that the
plotting symbol be a diamond instead of the default circle. The user has a
choice of quite a few plotting symbols.

In each plot there is a menu button that has further useful options. One can
select or deselect points with the mouse, highlight certain points, save the plot
as a postscript file etc. I will only discuss a single feature, that of linking. Linked
plots are a way of sharing information between plots. Consider for example,
figure 2, where we have a plot of requests versus time as well as a histogram of
requests.

If you enable linking by choosing the Link View item in the menu in each plot,
selecting a vertical bar in the histogram by dragging the mouse with the button
pressed causes the corresponding points in the line plot to be highlighted. You
might have to peer at the figure to see that the point where the highest peak
occurs is highlighted since it corresponds to the highlighted histogram bar.
Linking is extremely useful in viewing multidimensional data since one can get a
better idea of how the same group of points can be projected in different
views.

Online documentation for Lisp-Stat is available via the functions help, help* and
apropos. For help on the mean function, type (help 'mean). The use of the
quote is essential, otherwise the interpreter would assume that mean is a
variable and try to evaluate it. However, in many situations, one does not know
what the function is named.

For example, is the function that multiples two matrices mat-mult or matrix-

multiply? Typing (apropos 'mult) will print a list of all symbols that have the
word “mult” in them. This might help you narrow down the search. On the
other hand, if you know that the function you are looking for contains the word
matrix in it, (help* 'matrix) will return help on all symbols that contain the word
matrix. The help facility as it exists now is less than optimal and several people
are developing a more elaborate help system.

I usually read the newsgroup sci.stat.math and almost always there is someone
out there who wants to know how to calculate an F-probability or how to
generate a normal random variable. Lisp-Stat has distribution functions and
generators for all of the commonly used distributions. For example (normal-cdf

1.645) will give you the probability to the left of 1.645 which is about 0.95. The
statement(def x (normal-rand 100)) will define x to be a list of 100 standard
normal variates. Similar functions exist for Students-T, Gamma, Beta, Chi-
squared and F distributions as (help* 'cdf) or (help* 'rand) will show.

Lisp-Stat has many functions for input and output. For dealing with files, I've
rarely needed to go beyond using the two functions read-data-file and read-

data-columns. The statement (read-data-file "foo.dat") returns the whole file
contents as one long list, while (read-data-columns "foo.dat") returns a list of
columns of the file. One can specify the number of columns in the data file as a
second argument to read-data-columns. Otherwise, it guesses the number of
columns based on the first line. The function format, which is similar to C's
sprintf(), is a versatile function for formatted printing.

Programming in Lisp-Stat

Lisp-Stat's graphical system and regression models are implemented using a
prototype-based object system. This is different from the class-based object
system used by languages like C++ or the approach used by Common Lisp
Object System (CLOS). Briefly speaking, there is a root prototype object from
which instances of all other objects are created. Objects can have slots to hold
information and they respond to messages which are dispatched to the object
using the send function. Messages are typically keywords, words that begin
with a colon–:add-points in figure 2 is an example.

The code that actually implements the action is called a method for the
message. The macros defproto and defmeth make the process of constructing
objects and writing methods easier. Lisp-Stat would be less interesting if all it
provided were objects for building statistical models. The windowing system
provides objects for building user interfaces like menus, dialogs, slider controls
etc. So one can construct nice dialogs to go with the computations.

Figure 3: A 2-D Plot with a Least Squares Line Superimposed

A Simple Animation

Figure 3 shows an example of dynamic animation using a slider dialog. The
function sin2pi x/n is plotted. The slider allows the user to see the plot change
as n is changed. The code to perform this is below.

(setf n 1)
(defun f (x) (sin (/ (* 2 pi x) n)))
(def sine-plot (plot-function #'f -5 5))
(defun change-n (x)
 (setf n x)
 (send sine-plot :clear :draw nil)
 (send sine-plot :add-function #'f -5 5))
(sequence-slider-dialog (iseq 1 20) :action #'change-n)

The function sequence-slider-dialog creates a slider. Initially, the global variable
n is 1. Every time the user moves the slider-stop using the mouse, the function
change-n gets called with the value of n corresponding to the slider-stop. In our
example, n can be any integer from 1 to 20. The function change-n sets the
value of n and redraws the plot.

Figure 4: A 2-D plot with a Least Squares Line Superimposed

An object-oriented Programming Example

In order to keep the discussion tolerable, I chose a simple example that is
probably not too useful. For serious programming, one needs to know about
the built-in prototypes and functions of Lisp-Stat discussed in Tierney's book. I
shall introduce what I need as I go along.

We will create an object that accepts a list of (x,y) values and draws a plot with
the least-squares line superimposed on it. We will also require that the
equation of the least-squares line be displayed in the plot. We begin by defining
a new prototype. It is only natural that our prototype be a descendent of the
built-in prototype scatterplot-proto which “knows” all about drawing 2D plots.

(defproto least-squares-plot-proto '(intercept slope) ()
 scatterplot-proto)

Notice that our prototype has two slots for holding the intercept and the slope
of the least squares line. We will need to access the values in these slots later,
so it is best to define two simple methods using the defmeth macro that return
the slot values.

(defmeth least-squares-plot-proto :slope ()
 "Returns the slope of the least squares line."
 (slot-value 'slope))
(defmeth least-squares-plot-proto :intercept ()

https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1064f4.jpg

 "Returns the intercept of the least squares line."
 (slot-value 'intercept))

We have provided a documentation string for the methods; the documentation
can be retrieved by means of a command such as (send least-squares-plot-

proto :help :slope).

In order to use our prototype, we must define a :isnew method that initializes
an instance of the prototype. Our :isnew method must calculate the least-
squares line and store the slope and intercept. It should exploit its lineage as a
descendant of scatterplot-proto by invoking the inherited methods to do the
plotting tasks. Some space must be created in the margin to display the
equation for the least-squares line.

Finally, the x,y points must be plotted, the axes labeled, and the window
redrawn to reflect the changes. Here is the method.

(defmeth least-squares-plot-proto :isnew (x y &key (title "LS Plot"))
 (let* ((m (regression-model x y :print nil))
 (beta (send m :coef-estimates)))
 (setf (slot-value 'intercept) (select beta 0))
 (setf (slot-value 'slope) (select beta 1)))
 (call-next-method 2 :title title)
 (send self :margin 0 (+ (send self :text-ascent)
 (send self :text-descent)) 0 0)
 (send self :add-points x y)
 (send self :variable-label 0 "X")
 (send self :variable-label 1 "Y")
 (send self :redraw))

We have used the regression-model function to compute the least-squares line.
The call-next-method function calls the :isnew inherited method of scatterplot-

proto–this is what actually creates a plot-window. The argument 2 just refers to
the number of variables that will be plotted. At this point, the plot-window is
actually blank. Using information about the font in use, a margin area is
created. Then the points are plotted. In the body of a method the variable self

is bound to the object receiving the message. The method concludes by giving
some meaningful names to the variables and redrawing the window.

All the above code will do is plot the points. How can we ensure that least-
squares line and its equation are also displayed? We use the fact that any
window is actually drawn using a :redraw message. By writing a new :redraw

message, we can ensure the results we want. In actuality, the :redraw message
itself is executed via three other messages :redraw-background, :redraw-

content and :redraw-overlays. We really only need to write a :redraw-content

method since only the content of the plot is affected. So here we go.

(defmeth least-squares-plot-proto :redraw-content ()
 (call-next-method) ; Let the scatterplot do its things.
 (send self :adjust-to-data :draw nil) ; make sure scale is ok.
 (let* ((limits (send self :range 0))
 (intercept (send self :intercept))
 (slope (send self :slope))

 (info-str (format nil "y = ~5,3f + ~5,3f x" intercept slope)))
 (send self :draw-string info-str
 10 (+ (send self :text-ascent) (send self :text-descent)))
 ; Display the equation in the margin.
 (send self :add-function ; Draw the LS line.
 #'(lambda (x) (+ intercept (* slope x)))
 (car limits)
 (cadr limits) :draw nil)))

Notice that the keyword argument :draw is nil to avoid infinite loops in the
redrawing process. If :draw is not nil, the :redraw method gets invoked again.
The line is actually drawn using the :add-function method of scatterplot-proto.
We need not worry about drawing the points since that is the responsibility of
scatterplot-proto once we have added the points in the :isnew method.

Figure 4 shows the results of using this code with the following program.

(def x (normal-rand 20))
(def y (+ 5 (* 2 x) (normal-rand 20)))
(def m (send least-squares-plot-proto :new x y))

Final Remarks

Compiling a Lisp-Stat program is straightforward. The statement (compile-file

"foo") in Lisp-Stat will compile the file foo into foo.fsl. When you load the file foo
later, the compiled file is loaded if it exists and is newer than the uncompiled
file. Debugging can be accomplished via the debug, baktrace and trace

functions. A stepper is also available to step through lines of code.

There are many interesting dynamic animations can be constructed in Lisp-Stat.
This article has only scratched the surface. Lisp-Stat continues to evolve and
Xlisp itself continues to move closer and closer to Common Lisp due to the
efforts of many, particularly Tom Almy and Luke Tierney. The available body of
applications and software for Lisp-Stat is also growing; see the sidebar “Getting
Lisp-Stat” for more information.

Balasubramanian Narasimhan teaches Statistics at
Penn State Erie, The Behrend College. His interests
include classical western music, Seminole football and
the history of India. He may be reached at
naras@euler.bd.psu.edu

Getting Lisp-Stat

Lisp-Stat is freely available on the net. The primary distribution site is
ftp.stat.umn.edu. Look under pub/xlispstat for xlispstat-3-44.tar.gz. The file is
about 1.2 Megabytes, which means that it fits nicely on a 3.5-inch disk. It
compiles out of the box on Linux, but to use the foreign-function interface, you
must first install the GNU dld library, available from tsx-11.mit.edu under pub/
linux/binaries/libs as dld-3.2.5.bin.tar.gz. For those who don't want the
adventure of building from scratch, you can obtain a binary from

mailto:naras@euler.bd.psu.edu

euler.bd.psu.edu under pub/lj/xlispstat. Follow the instructions in the README
file. The file xlispstat-3.44-bin.tar.gz is the whole binary.

There is a mailing list for Xlisp-Stat users. To join the mailing list send a
message with your e-mail address saying that you want to subscribe to stat-
lisp-news-request@stat.umn.edu.

The Usenet newsgroup comp.lang.lisp.x is devoted to XLisp, however it is a low-
volume newsgroup averaging 2-3 articles a day.

The site ftp.stat.ucla.edu has a good amount of Lisp and Lisp-Stat related stuff.
For a look at some hypertext applications, look at the sites euler.bd.psu.edu
and www.stat.ucla.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:stat-lisp-news-request@stat.umn.edu
mailto:stat-lisp-news-request@stat.umn.edu
http://euler.bd.psu.edu
http://www.stat.ucla.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in the Rugged Field

Sid Hellman

Issue #16, August 1995

Linux makes field seismology simpler, less expensive, and more efficient. Sid
Hellman explains why having the source available helped make Linux the best
choice for a portable workstation for field data analysis.

Traditionally, seismologists have used laboratory-based Sun computers to
analyze data recorded in the field. But the advent of inexpensive Intel-based
laptops and Linux has allowed us to take workstations out of the lab and into
the field. This has involved the routine porting of code across OS platforms as
well as kernel level development. After a year of hard work, scientists affiliated
with the PASSCAL Instrument Center have been using Linux as a portable
workstation for seismic studies from Missouri to Massachusetts and from
Micronesia to Tanzania.

Contrary to the implications of our name, we are not a group dedicated to or
affiliated with the Pascal programming language. PASSCAL, or the Program for
Array Seismic Studies of the Continental Lithosphere, is a member program of
IRIS (the Incorporated Research Institutions for Seismology), which is a
consortium of 90 U.S. universities (there are a number of affiliate members,
both foreign and domestic). We have been located at Columbia University's
Lamont-Doherty Earth Observatory since 1989, while a second instrument
center was established at Stanford University in 1992.

Kobe Earthquake Seismic Data Displayed on a Linux System

In seismology, it is common for a scientist to run an experiment requiring the
use of many expensive instruments for a relatively short period of time. Having
individual scientists spend hundreds of thousands of dollars on equipment,
only to have it collect dust on a shelf for 80% of its life, makes little sense in this
era of fiscal belt-tightening. In addition, few scientists have the time to master
and integrate equipment from a variety of manufacturers into a reliable data
acquisition system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f1.jpg

PASSCAL Team Member Bob Busby in Pakistan

Therefore, the PASSCAL Instrument Center was organized to service the seismic
community—providing a powerful and flexible portable instrument along with
expertise that can only be obtained via experience. We supply logistic and
technical support, provide for system integration and maintenance, and deliver
comprehensive feedback to the manufacturers. Since experiments are
returning from the field with Terra-Bytes of data, an extensive suite of
programs have been developed to assist the seismologists with the acquisition
and archiving of data and for assuring data quality. The popularity of this
program has grown to the point that experiment scheduling for 1997 is
currently underway.

Historically PASSCAL experiments have utilized two separate computer
systems, one for data acquisition and one for data analysis. The data
acquisition system (DAS) is comprised of a series of weather-tight grey boxes
(CPU, SCSI disks, batteries), peripherals (solar panels, GPS receiver), and a hand
terminal with an LCD touch-screen to program the DAS and retrieve data. A
standard Sparcstation running SunOS, which may or may not be located
anywhere near the seismic station, is used for data analysis and quality
assurance.

The portable aspect of the PASSCAL instrument explains the program's
popularity, at the same time it also introduces logistic difficulties. Investigators
frequently erect stations in remote locations, making access difficult and/or
expensive. Hence station visits are infrequent, with users allowing the DAS to
run for months before they return for data retrieval. Retrieval is accomplished
by copying to tape (or spare disk), which is then brought back to the lab for
quality control, data analysis and archiving. Detecting problems with the
instrument at this stage requires a return trip. (At one of our stations in
Micronesia, there is only one flight a week to the island. You fly in, work for 4
hours, wait a week, fly back, check your data, and, if there were any problems,
fly back a week later.)

In November of 1993, I installed Linux at home simply to have a operating
environment similar to the one I used at work. I got X up and running and
discovered the XView libraries sitting there serendipitously on my hard disk.
One major piece of code for which I was responsible uses X (via XView) for
displaying seismic traces, and approximately 17 milliseconds later I decided to
port this program to Linux, just so I could work at home.

One day I dragged my PC into work to show everyone what Linux could do. A
member of our team remarked that if we could run this on a portable
computer, we could actually look at the raw data and perform spectral analyses

https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/016/1131f2.jpg

of the data in the field, while there is still time to correct mistakes. That led to
the thought that if we had a computer with X-windows in the field, we could
even write some user-friendly and powerful software to program the DAS,
instead of using the hand-terminal.

At the time we were actually experiencing a dilemma concerning the
programming of the DAS's. Epson manufactures the hand terminal, which runs
a simple basic program and interfaces to the DAS via a serial port. This hand
terminal is fairly user-friendly: Just point with your finger and push. The
problem is that only rudimentary diagnoses can be made with the hand
terminal. There is a DOS-based alternative to this program that is more
powerful (i.e. has many options), but “user friendly” is not a phrase we use to
describe it.

Since many of our users only perform field work every few years, and many are
novice grad students, user friendliness is of utmost importance to guarantee
data integrity. The idea of combining the power of the DOS program with the
ease of use of the hand terminal into a beautiful X-windows program was
compelling.

With a dream and a need, we did what many of you have done: We went
looking for money. Selling the laptop idea was actually quite easy; selling Linux
was another matter. Since all of our existing code was written to run under
SunOS and X Windows we did not even entertain the idea of porting our code
to MS-Windows or OS2.

However I was not actually sold on Linux, myself. My first PC-Unix experience
was with Interactive Unix, back when it was owned by Kodak. I really had no
objection to going with them again (or SCO, or whomever). We investigated the
alternatives, and as many of you have also discovered: chances are good that
Linux provides better support than the other PC-Unixes for any given piece of
hardware. After demonstrating that to ourselves and our boss, we went with
Linux.

We purchased our first two laptops in early 1994, primarily to study the
feasibility of running Linux laptops in the field. When my co-workers Paul
Friberg and John Webber and I began porting major pieces of our code, we hit
our first bottleneck in very short time: SCSI. All of our data is acquired and
stored on SCSI devices, and much of our code required data just to be tested.
Our quick-fix was to purchase a docking station and install a SCSI adapter here.
Obviously this was neither a permanent nor portable solution, but it was
enough to get us started.

We looked into PCMCIA SCSI, but no support existed at that time. We reasoned
that with the infancy of the technology, support could not be expected
immediately, but would be coming along shortly. Foolishly, we decided to wait
for it while proceeding with the development of all the other code we would
need.

Because we are also heavily entrenched in Tcl/Tk, we decided to write a Tcl/Tk-
based replacement for the hand terminal. We managed to combine the hand
terminal's point-and-click ease of use with the functionality of the DOS
program. The BLT extensions to Tcl/Tk made this program downright fancy.

We also wrote a program to display seismic data in real time, allowing users to
examine the background signal of the seismometer before walking away and
leaving it for a few months. (The alternative has always been to acquire data to
disk, run some data conversion programs, load up the data into the viewer,
make changes to the instrument and repeat the procedure. This, of course,
assumes that you have a workstation near the seismometer.) The new option
of acquiring and displaying in real-time while making adjustments can easily
save time and effort.

At this point we had assembled a sizeable suite of programs, and all that
remained was getting the data. Again we asked around the net, but no-one
knew of a Linux supported PCMCIA SCSI card. Gennady Pratusevich, our
engineer, decided to write a driver for Linux, and we decided to go with the
Trantor/Adaptec card. Since most of the other Adaptec cards were well-
supported, we figured that Adaptec would provide us with the programming
information. We were quite wrong.

We started searching around for SCSI cards from companies that would supply
us with programming information. We found a small producer of such cards in
Colorado, initially he seemed interested in Linux, but he never got back to us
again. We considered developing our own card when some Linux newsgroup
wisdom indicated that the New Media Bus Toaster used the AIC6360 chipset.
This is the same chipset used by the Adaptec 1522 board. We purchased a Bus
Toaster and, armed with the source code for the Adaptec 1522 driver, David
Hind's PCMCIA code, and a few assorted manuals, Pratusevich managed to
create a fully functional SCSI driver. With the subsequent introduction of
loadable SCSI modules, the real power of PCMCIA was realized, allowing us to
swap disks on the fly. We were finally ready for prime time.

I would like to point out here that if we had chosen an operating system that
did not release the source code, this would have been the tragic end of our
story.

Last December we attended the fall meeting of the American Geophysical
Union in San Francisco, having just taken delivery of 5 additional laptops.
Usually we have our Sun Sparcstations on prominent display, but this year they
were hidden behind our Linux laptops (as if a full-sized workstation could hide
behind a 7-pound laptop). Linux was a hit, and everyone wanted one.

The second week of January saw us shipping four laptops into the field.
Preliminary reports are encouraging. The laptops work and are making life
easier for our users. The people using these machines are not Linux experts,
but the machines are easy enough to use that people would rather utilize these
than any currently available DOS alternative.

We did not originally expect Linux to be the way to go for us. Obviously porting
to a Sparc laptop would have required much less work, but they are
prohibitively expensive. We also looked into Solaris for PC's, but the minimal
volume of hardware that Solaris supports turned us away. If any of you are
trying to convince your supervisors to go with Linux, first sell the idea of Unix,
and then have them compare Linux to Solaris and the like. The best decision
becomes obvious at this point.

The work described in this article was supported by
the Incorporated Research Institutions for Seismology
and by the National Science Foundation under
Cooperative Agreement No. EAR-9023505. Any
opinions and conclusions or recommendations
expressed in this material are those of the author and
do not necessarily reflect the views of the National
Science Foundation.

Shortly after Sid Hellman earned his masters in physics, a knee injury diverted
him into programming. A Systems Analyst at Columbia University's Lamont-
Doherty Earth Observatory since 1990 (seismology since 1993), his duties have
ranged from programming to electronics to field work. The PASSCAL
Instrument Center can be reached at passcal@ldeo.columbia.edu or via the
WWW at www.ldeo.columbia.edu/Passcal/passcal.intro.html

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:passcal@ldeo.columbia.edu
http://www.ldeo.columbia.edu/Passcal/passcal.intro.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Programing Hints

Jim Shapiro

Issue #16, August 1995

Perl is often considered a scripting language for systems administrators. Jim
demonstrates that it is useful to applications and scientific programmers as
well—as a prototyping tool.

If you are like many Linux users you may have heard of Perl, but have been
reluctant to learn another language. This was my situation several months ago.
A friend suggested I give Perl a try. Since I already knew C, Perl was a snap to
learn. I soon found myself doing all sorts of text reformatting using Perl. My
friends and coworkers were impressed, but skeptical. Could Perl cut the
mustard on big files where a ton of data had to be read, massaged and written?

Their skepticism subsided, however, when I wrote a Perl program (I prefer to
call them programs rather than scripts just to separate them from shell scripts)
to load over three and a half million lines of US Postal data. Now I actually teach
Perl (but I digress).

In this article I would like to suggest a use for Perl which is often overlooked—
Perl as a prototyping tool. Most C programmers spend a fair amount of time
managing memory, and I am no exception. Memory management is a
necessary function, especially if you want to keep your C programs tight—not
using more memory than necessary—and well behaved—not crashing with the
resulting core dumps. The problem with managing memory yourself is that it
can divert attention from the program's purpose, which is typically to get an
algorithm running.

With Perl, not only do you get solid memory handling routines, you get them in
an interpreted/compiled environment and, thanks to the Free Software
Foundation, they will not cost you a penny. In fact, if you have Linux you
probably already have Perl as well. Let me illustrate how Perl can be used as a
prototyping tool with two examples, a simple Monte Carlo calculation and a
more substantial geometric problem.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A Monte Carlo Estimate Of pi

Monte Carlo techniques use probabilistic methods to make estimates. Typically,
one or more random numbers are substituted into a function and the resulting
value is tested for validity. The program keeps track of both the number of
satisfactory tests and the total number of tests. The result is the ratio of
satisfactory to total tests and this ratio is monitored as the number of tests is
increased.

#!/usr/bin/perl
Monte Carlo calculation of pi
srand(time | $$);
for($i = 1, $inside = 0.0; $i <= 1000000; $i++)
 {
 $x = rand;
 $y = rand;
 $inside++ if $x * $x + $y * $y < 1.0;
 printf "After %7d points pi ~= %9.7lf\n", $i, 4.0 * $inside / $i if
 ($i % 10000) == 0;
 }

Figure 1. A monte Carlo Calculation of pi

Let us get our feet wet with a short and simple Perl program. Figure 1 is a
program which estimates pi using a Monte Carlo calculation. Consider a circle
inscribed inside a square of side two centered at the origin. The area of the
square is four and, since the circle has a radius of one, its area is pi. The ratio of
the area of the circle to that of the square is thus pi / 4, and this is also the
chance that a random point within the square is also inside the circle. This
program repeats a loop a million times, each time calling Perl's rand function
twice, once for x and once for y. The distance of the x, y pair from the origin is
calculated and, if it is less than one, it is counted as a successful test.
(Technically, this program uses only the parts of the circle and the square in the
first quadrant for simplicity, but, by symmetry, the ratio of areas is the same as
if the whole of both figures had been used.)

A Linux tip—if you give your Perl programs a unique extension, like .pl, it is easy
to make them stand out in ls type listings. Adding the line:

.pl 01;33 # perl programs (yellow)

to the file /etc/DIR_COLORS will make the names of all files with .pl extensions
in listings appear in yellow. See the man pages for ls and the file /etc/
DIR_COLORS for details.

Note, first of all, how short the Perl program is. Also, note how much it
resembles a C program, especially the for loop and the printf function. There
are important differences, however. Variables, like $i, $x, etc. are used when
needed without a specific declaration. It is not even clear to the casual observer
what the types of the variables are. And what is with these if statements after

the statements they control? And rand is used like a function, but there are no
parentheses—maybe it is a keyword.

All of these differences are features of Perl. Perl keeps track of your variables
for you. The variables are really strings internally, but they get converted to
doubles when needed such as when the distance of the random point from the
origin is calculated and compared to one. You needn't concern yourself with
any of these details, however. The if test at the end of a line is a handy
equivalent to C's if block (the C style is OK in Perl also) but a lot shorter. You will
find yourself using Perl's if style all the time once you get the hang of it. Perl's if
has three relatives (unless, while and until) which also can be used before a
block or at the end of a series of comma separated statements. Finally, rand

really is a function—in this case the parentheses are optional. This is the case
with many functions, including the printf at the bottom of the for loop.

If you run the program in Figure 1, you will get an estimate for pi after every
10,000 tests. I call the program m_c.pl and run it by typing its name. The first
line is the path to the Perl program on my system. Change this path if yours is
different. You can also test a program for syntax errors with a -c command line
switch, i.e.

perl -c m_c.pl

Perl will also provide warnings, such as when you assign to a variable and never
use the variable again. Use the -w command line switch to turn on warnings.
This is a handy way to uncover spelling errors which can easily crop up in an
environment without explicit variable declarations. I usually use both tests
simultaneously during development, i.e.

perl -cw m_c.pl

Point In Polygon

Next let us consider a more difficult problem. How do we test whether a point
is inside a polygon? This problem is not as simple as it may first appear,
especially when you take into account the special cases—such as when the
point is on the boundary of the polygon. Is that inside, outside, or do you want
to count it as a separate case—on the boundary? Let's break the problem down
and start by writing a Perl subroutine to test whether a point is on a line.

A not-too-efficient but easy-to-code routine works as follows. If a point is on a
line the sum of the distances from the point to each of the line endpoints is the
same as the distance between the endpoints, i.e. the length of the line. You
might want to reread the previous sentence and make a little sketch to
convince yourself that this is indeed the case. We will first need a routine (in

Perl they are called subroutines) to find the distance between two points. C has
a built-in function, hypot, but the one-liner in Figure 2 is the Perl equivalent. The
sub keyword denotes a subroutine and the subroutine's name follows. There is
no parameter list in the definition of a subroutine. Those are comments
following the subroutine name in Figure 2. We will supply the parameter list
when we call the subroutine, as you will see shortly.

sub hypot # (x, y) returns sqrt(x * x + y * y)
{
sqrt $_[0] * $_[0] + $_[1] * $_[1];
}

Figure 2. Perl Subroutine to Find Distance Between Points

When you call a subroutine in Perl all of the parameters are automatically put
into an array @_ (The @ denotes a standard array). In this case the array has
two elements, the differences in the x and y coordinates of the two points. Note
that the elements are referenced by address so that we need to be careful. Any
modifications to these variables would change the values outside this
subroutine. In Perl you can also create local variables within a subroutine, or
inside of any block for that matter. Normally I would do so, but since this
subroutine is so short and is likely to be called many times, I avoided the
overhead of local variables. Note again, that a Perl function, sqrt, was called
without any parentheses. The return value of a subroutine is the last thing
calculated (or you can overrride this behavior with a specific return value). Here
the Pythagorean result is the last value calculated, so no explicit return is
necessary. You will probably find, as I have, that explicit return statements are
rarely needed.

Now we need to tell our program what points and areas are. In C we seem to
have the advantage of structures at our disposal. We would probably set up
something like the typedef and declaration in Figure 3.

typedef struct
 {
 double x,
 y;
 } POINT;
POINT *polygon_p;

Figure 3. Typedef and Declaration

A point has x and y coordinates and a polygon has three or more points. Every
time we need a polygon we can malloc the space for it and fill it with points—
and free the space when we are done with it. This is where Perl shines.

Perl has neither explicit memory allocation nor structures. The good news is
that we do not have to concern ourselves with memory—it is there when we
need it. The bad news is that we have to come up with some system like C's

structures. This turns out to be trivial. Let us put everything into strings. Perl
takes care of strings of any length, relieving us of the pesky problem of
counting characters. You do not even have to add one for the terminating null
character—Perl does not use a terminator.

Our point will simply be a string containing two doubles joined by a comma;
our line will be a string containing two points joined by a colon; and our
polygon will be a string containing three or more points joined by colons, like
so:

$point = "1.0,2.0";
$line = "0.0,0.0:0.0,1.0";
$polygon = "1.0,2.0:6.0,5.0:0.0,3.1";

These “structures” turn out to be easy to scan visually and very easy to manage,
thanks to Perl's join and split functions. Figure 4 is the point_on_line subroutine
I developed using the above scheme.

$epsilon = 1.0e-10;
sub point_on_line #(point, line) returns 0 or 1
{ # if on - sum of distance to ends should be distance between ends
local($point, $line) = @_;
local($p_x, $p_y) = split(",", $point);
local($l_b, $l_e) = split(":", $line);
local($l_b_x, $l_b_y) = split(",", $l_b);
local($l_e_x, $l_e_y) = split(",", $l_e);
&fabs(&hypot($p_x - $l_b_x, $p_y - $l_b_y) +
 &hypot($p_x - $l_e_x, $p_y - $l_e_y) -
 &hypot($l_e_x - $l_b_x, $l_e_y - $l_b_y)) < $epsilon;
}
sub fabs # (x) returns absolute value of x
{
local($rv) = @_;
$rv = -$rv if $rv < 0.0;
$rv;
}

Figure 4. point-on-line Subroutine

This subroutine is called with two strings, i.e.

&point_on_line($point, $line);

and returns one if the point is on the line, and zero otherwise. Note that in this
case I put the calling parameters into local arrays for safety and ease of
maintenance—$point and $line are easier to remember next week than $_[0]

and $_[1]. The split function's use should be obvious. The point string gets split
into two coordinate strings by the comma, and the line string gets broken into
two point strings by the colon. Then the points at the beginning and end of the
line, $l_b and $l_e, get broken down into their respective coordinates. Finally
the coordinates are passed to our hypot function. Note how the & sign is used
to prefix a subroutine for the call. Perl has no equivalent to C's fabs so I quickly

rolled my own in Figure 4. I used the $epsilon variable to avoid floating point
roundoff problems.

We have been building this thing from the bottom up. So far we have a routine
to test whether a point is on a line. Our goal is a routine to test whether a point
is within a polygon. Let me give you an overview of how we are going to solve
the problem, provide you with two more Perl routines (which you should be
able to read now), and then show you the external “workhorse” routine that
does the final inside/on/outside determination.

Our polygon is a closed figure and every point is either inside, outside, or on
the boundary (there is actually a mathematical statement called Jordan's Curve
Theorem that proves this!). If we can establish a point that is guaranteed to be
outside of our polygon, we can test the “insideness” of any point by connecting
this test point to our “outside” point by a straight line and counting the number
of times the line crosses the polygon. Clearly if the line never crosses the
polygon, the point is outside; if it crosses once the point is inside; and, in
general, if the line crosses the polygon's boundary an odd number of times, the
point is inside. An even number of crossings means the point is outside. To put
it another way, every time the line crosses the polygon it changes from being
either inside to outside or vice-versa. Starting from the outside point our first
crossing (if any) puts us inside; the next crossing (if any) puts us back outside;
etc., odd-inside, even-outside. So, it looks like we will need a routine to test
whether two lines intersect.

One way of testing for line intersection is to make sure both endpoints of each
line are on opposite sides of the other line. (Reread and make a few pictures, as
before.) This leads to our final routine. Now we will test whether, when we walk
along a line from the beginning point to the opposite end and then turn to go
straight to another point, we turn counterclockwise or clockwise. This
discussion and the resulting routines are modeled after Sedgewick's in
“Algorithms in C”, pages 349-354 (Robert Sedgewick, Addison Wesley, 1990). Let
us start with the counterclockwise subroutine, ccw in Figure 5.

sub ccw # (three points) return -1, 0, or 1
{
local(@points) = @_;
local($rv) = 0;
local($dx1, $dx2, $dy1, $dy2, $p0x, $p0y, $p1x, $p1y, $p2x, $p2y);
($p0x, $p0y) = split(",", $points[0]);
($p1x, $p1y) = split(",", $points[1]);
($p2x, $p2y) = split(",", $points[2]);
$dx1 = $p1x - $p0x;
$dy1 = $p1y - $p0y;
$dx2 = $p2x - $p0x;
$dy2 = $p2y - $p0y;
switch:
 {
 $rv = 1, last if $dx1 * $dy2 > $dy1 * $dx2;
 $rv = -1, last if $dx1 * $dy2 < $dy1 * $dx2;
 $rv = -1, last if ($dx1 * $dx2 < 0.0) || ($dy1 * $dy2 < 0.0);
 $rv = 1, last if ($dx1 * $dx1 + $dy1 * $dy1) < ($dx2 * $dx2 + $dy2 * $dy2);

 }
$rv;
}

Figure 5. Counterclockwise (ccw Subroutine)

The ccw routine accepts three points and compares the slope of the line from
the second to the third with the slope of the line from the first to the second. It
is carefully constructed to handle vertical lines and even the case of collinear
points. Note how the input points are collected into a local array, @points,
avoiding side effects and making the program easy to maintain and
understand. The points each get split into their respective coordinates with the
test being carried out in a block labeled switch (for obvious reasons). By now
you have probably guessed that Perl allows labels, just like C. There is no
specific switch construct in Perl, however. The block in ccw above is Perl's way
of building a switch. The last keyword immediately exits the block and
sometimes the Perl interpretor is smart enough to convert the block to a C
switch statement internally (although not in this case).

sub intersect # (two lines) returns 0 or 1
{
local($l1, $l2) = @_;
local($l1_b, $l1_e) = split(":", $l1);
local($l2_b, $l2_e) = split(":", $l2);
&ccw($l1_b, $l1_e, $l2_b) * &ccw($l1_b, $l1_e, $l2_e) <= 0 &&
&ccw($l2_b, $l2_e, $l1_b) * &ccw($l2_b, $l2_e, $l1_e) <= 0;
}

Figure 6. Intersection Subroutine

Figure 6 is the intersection routine. It is very straightforward. The lines are split
into endpoints and the endpoints are tested for “sideness”.

We now have all the building blocks to construct our “inside” subroutine. First
we connect our test point with an “outside” point via a straight line. Then we
walk around the polygon, testing each polygon side in turn, accumulating the
intersections of the sides with the test line. If the number of intersections is odd
the point is inside, and vice-versa.

$big_float = 1.0e7;
sub lower_left_index # (polygon) returns index of lower left corner
{
local($polygon) = @_;
local($index) = 0;
local(@vertices) = split(":", $polygon);
local($x_min, $y_min) = split(",", $vertices[0]);
local($i, $x, $y);
for($i = 1; $i <= $#vertices; $i++)
 {
 ($x, $y) = split(",", $vertices[$i]);
 if(($y < $y_min) || (($y == $y_min) && ($x < $x_min)))
 {
 $x_min = $x;
 $y_min = $y;
 $index = $i;
 }
 }

$index;
}
sub inside # (point, polygon) returns 0 or 1
{
local($point, $polygon) = @_;
local(@vertices) = split(":", $polygon);
local($index) = &lower_left_index($polygon);
local($last_index) = $index ? $index - 1 : $#vertices;
local($count, $holding_point) = (0, 0);
local($i, $lp, $lt, $vertex, $x, $y, $big_x_point);
local($check_index) = $index; # true if index is not zero
OUTER: for(;;)
 { # one pass loop
 for($i = 0, $vertex = $vertices[$#vertices]; $i <= $#vertices; $i++)
 {
 $lp = join(":", $vertex, $vertices[$i]);
 $vertex = $vertices[$i];
 if(&point_on_line_2($point, $lp))
 {
 $count = 1;
 print "Point on boundary\n" if defined $verbose;
 last OUTER;
 }
 }
 ($x, $y) = split(",", $point);
 $big_x_point = join(",", $big_float, $y);
 $lt = join(":", $point, $big_x_point);
 for($i = 0; $i <= $#vertices; $i++)
 {
 if(&point_on_line_2($vertices[$index], $lt))
 {
 $holding_point = 1;
 }
 else
 {
 if(!$holding_point)
 {
 $lp = join(":", $vertices[$last_index], $vertices[$index]);
 $count++ if &intersect($lp, $lt);
 }
 elsif($holding_point &&
 (&ccw($point, $big_x_point, $vertices[$index]) !=
 &ccw($point, $big_x_point, $vertices[$last_index])))
 {
 $count++;
 }
 $last_index = $index;
 $holding_point = 0;
 }
 $index++;
 if($check_index && ($index == @vertices))
 {
 $check_index = 0;
 $index = 0;
 }
 }
 last;
 } # one pass "loop"
$count & 1;
}

Figure 7. lower-left-index and inside Subroutines

The pair of subroutines in Figure 7 are Perl implementations of functions
suggested by Sedgewick in the section “Inclusion in a Polygon” (pages 353-355),
although more complete. The lower_left_index subroutine returns the index of
the polygon point with the smallest x coordinate among all points with the
smallest y coordinate. This is necessary to account for the special cases when a
polygon vertex is on the test line. Note how, in the third line within the block,
the @vertices array is automatically constructed by splitting the $polygon string

with colons. Each element of the @vertices array is a pair of coordinates
separated by a comma, one for each vertex. Whenever we need individual x, y
pairs the split function is called, as we have seen before. This occurs before the
for loop to initialize $x_min and $y_min, and inside the loop to generate a new
test pair $x, $y. The upper limit in the loop variable $i is $#vertices, which is the
index of the last member of @vertices. Perl automatically keeps one of these
variables for each array. The last statement in this routine, $index; simply
establishes the return value.

The inside subroutine is our “workhorse” function. It is admittedly fairly
complicated, but you should be able to follow the logic if you have read this far.
Here is some help. The variable $index is used to walk from vertex to vertex
around the polygon starting from the index returned by lower_left_index. If this
index is anything other than zero, it will need to be reset after the vertex with
the largest index is encountered. The variable $check_index keeps track of both
whether this resetting will be necessary and, if so, whether it has been done
yet. The variable $last_index is the index of the last vertex that was not on the
test line. Generally this is the index of the vertex “behind” $index.

The OUTER label takes advantage of one of Perl's handiest features, the ability
to exit effortlessly from nested loops. You can do this in C if you like goto. In the
present example the polygon sides are created via the join function using the
colon as the separator. The sides are stored in $lp. If the test point is on a
polygon edge, there is no need to test further, so the OUTER loop is exited
immediately. Note that setting $count to one in this case is equivalent to
counting the boundary as inside the polygon, since one is an odd number. It
would be trivial to count the boundary as outside or even as a special case by
modifying the if block containing the statement: last OUTER;

If the point is not on an edge, a horizontal line from the test point to an outside
point with an x coordinate equal to $big_float is constructed and stored in $lt.
The remainder of this function tests for either line intersection or “sideness”
depending on whether the previous vertex was on the test line, incrementing
$count as appropriate. The return value of the inside function is 1, if the point is
inside, and 0 if the point is outside.

#!/usr/local/bin/perl
while(<DATA>)
 {
 chop;
 $polygon .= $_ . ":";
 }
chop $polygon;
for(;;)
 {
 print "Enter x and y separated by a comma (q to quit): ";
 chop($point = <STDIN>);
 last if $point =~ /^[qQ]/;
 print("No comma! Try again.\n"), redo if $point !~ /,/;
 $point =~ s/ +//g;

 print "Checking point: $point\n";
 printf "%s\n", &inside($point, $polygon) ? "inside" : "outside";
 }
__END__
5.0,4.0
0.0,0.0
10.0,5.0
0.0,10.0

Figure 8. Driver Routine for Inside Subroutine

A simple driver routine for the inside subroutine is presented in Figure 8. This
routine reads its data from the end of the perl program itself. Anything
following the line:

__END__

is considered data and is accessed through the (automatically opened) DATA

file handle. Two new operators introduced in this driver are “.” which
concatenates two strings and “.=” which appends one string to another. That is,
“.=” is to “.” as “+=” is to “+”. The chop function removes the last character from
each element of its argument list. Note how the line:

chop $polygon;

trims the final colon from the polygon string, so that it is a legitimate polygon.
Replace my data with your own if you want to run this driver, but be sure to put
a comma between the x and y coordinates.

Summary

You have seen two examples of how Perl can be used for prototyping. I hope
that from these examples you have gained a feel for Perl's syntax. More
importantly, I hope that you have seen how using Perl can free you from
concentrating on programming specific details, like memory allocation. Instead,
you can direct your efforts toward getting your algorithm up and running. I
have discovered that, in many cases, the Perl prototype was sufficient for my
purposes, saving me the time of coding the program in C or C++ at all!

When I do recode a prototyped algorithm from Perl to another language, I have
found that it is easy to change gears. The logic is behind me, freeing me to
concentrate on C specifics, memory allocation/deallocation, input/output, error
reporting, etc.

My suggestion to the reader is to program a simple application in Perl and see
for yourself how this very elegant and powerful language works. You may not
save any time with the first program or two, but it will not be long before the
benefits of Perl appear. If you feel ambitious, try writing a routine to replace my
point_on_line. I mentioned earlier that my algorithm for testing whether a point

is on a line is not very efficient. Another, more efficient scheme, is to first check
whether the point's x coordinate is within the x range of the line and, if so,
whether the point's y coordinate satisfies the equation of the line. Vertical lines
are special cases.

Among the many algorithms I have prototyped in Perl are LZW data
compression (the same as used in the UNIX compress utility), RSA encryption,
many matrix operations including eigenvalue/eigenvector determination and a
code generator that outputs C code from a database. I even have a little
program called “perls” that reads a database of perl programming tips and
prints a random tip to the screen. [I can provide this program to The Linux
Journal and/or its audience via Internet. Let me know if you are interested.]

[Yes, we are. We would like to put it on our web site, perhaps even in a cgi
script.]

Jim Shapiro is a consultant specializing in
programming mathematical algorithms. He is
presently developing a GIS system for a
telecommunications company. When he isn't on his
Linux system hacking away in C or Perl he can often be
found on the squash courts. Jim is a founding member
of LUGOR, the Linux User's Group Of the Rockies.

Perl Resources

Programming Perl by Larry Wall and Randal L. Schwartz, O'Reilly & Associates,
Inc., 1992. If you are serious about learning Perl, this is the book to read. It is all
here, including some very sophisticated examples. Not recommended for
beginners, however.

Learning Perl by Randal L. Schwartz, O'Reilly & Associates, Inc., 1993. A tutorial
divided into lesson sized chapters.

Teach Yourself Perl in 21 Days by David Till, SAMS publishing, 1995. My
personal favorite. Looks more daunting (841 pages) than it is. I got so excited I
read it in seven days. Read this one, then “Programming perl”, and you will
soon be an expert.

The “man” pages. Not bad if you want to get the flavor of the language, but
mine seem dated.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

PracTCL Programming Tips

Stephen Uhler

Issue #16, August 1995

This month, we inaugurate a bimonthly column for Tcl/Tk programmers.
Stephen Uhler will cover some useful but perhaps poorly-known or poorly-
understood features of the Tcl language and the Tk windowing toolkit.

For those new to the Tcl language, the name of this column might be confusing:
Tcl is pronounced “tickle”. This column will be mainly for those who already
know Tcl and Tk and wish to learn how to improve their programming skills. For
readers who would like to learn about Tcl and Tck, they are amply covered in
John K. Ousterhout's book Tcl and the Tk Toolkit, and Linux Journal printed an
introductory article in the December 1994 issue as well.

User interfaces are created in Tk with two steps. First, the user interface
elements (called widgets) such as buttons or scollbars are created using the
appropriate widget commands. Next, they are arranged on the display with a
geometry manager.

Tk comes with several different geometry managers to choose from. The
“packer” and “placer” are general purpose geometry managers, whereas the
“text” (in tk4.0) and “canvas” widgets can also operate as geometry managers by
positioning other widgets inside themselves. Additional geometry managers are
available in some of the many extension packages, such as “blt_table” from the
BLT extensions by George Howlett.

Traditionally, the “packer” is called upon as the primary geometry manager in
Tk applications, because of the powerful constraint based layouts it supports,
whereas the “placer” is reserved for beginners who have not yet mastered the
packer's intricacies. John Ousterhout, in Tcl and the Tk Toolkit spends 15 pages
describing the “packer”, but a single paragraph on “place”, suggesting “the
placer is only used for a few special purposes”. In fact, the “placer” is an
essential tool for the power user because it affords exact control over widget

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

positioning. I'll demonstrate two example uses of the “placer” that hint at its
true power.

How to be a Pane in Tk

For the first example, we'll write a special purpose geometry manager entirely
in TCL, using the “placer”, to construct a Motif-like “pane” widget. The “pane”
widget divides a window into two halves, or panes, and provides a handle the
user can use to dynamically change the relative size of each half.

frame .top
frame .bottom
frame .handle -bd 2 -relief raised -bg red \
 -cursor sb_v_double_arrow

We'll start off by creating two frames, .top and .bottom, and a resize .handle to
change the relative size of .top and .bottom. In this example, we'll put our
“pane” widget in the top level ., but it could be used almost anywhere.

place .top -relwidth 1 -rely 0 -height -1 \
 -anchor nw
place .bottom -relwidth 1 -rely 1 -height -1 \
 -anchor sw
place .handle -relx 0.9 -width 10 -height 10 \
 -anchor e
. configure -bg black

These 3 widgets are arranged by the “placer” in two steps. First we specify the
options to place that won't change. Both .top and .bottom will span the entire
width of the window (-relwidth 1), with .top anchored to the top (-rely 0 -anchor

nw) and .bottom anchored at the bottom (-rely 1 -anchor sw). The option -
height -1 (a new Tk4.0 feature) decreases the height of .top and .bottom by 1
pixel, which leaves a “gap” between the windows, so the root window will show
through as a black (.<\!s>configure -bg black) line between the 2 panes. Finally,
we'll place .handle near the right edge.

bind . <Configure> {
 set H [winfo height .].0
 set Y0 [winfo rooty .]
}

To calculate the relative placement of .top and .bottom we'll need to know the
position (Y0) and size (H) of the root window, which we'll compute any time
either could change, by binding the computation to a <Configure> event. Since
the height (H) will be used as a floating point number, we'll tack on a .0.

bind .handle <B1-Motion> {
 adjust [expr (%Y-$Y0)/$H]
}

When the user moves the handle by dragging it with the mouse, we'll compute
the fraction of the way down the root window the mouse is, and call adjust to

move the windows accordingly. We need to use %Y, the mouse position in
“root” coordinates, because %y is relative to the handle and not the root
window, ..

proc adjust {fract} {
 place .top -relheight $fract
 place .handle -rely $fract
 place .bottom -relheight [expr 1.0 - $fract]
}

The procedure adjust takes a fraction between 0 and 1, changes the the height
of top and bottom windows, and updates the position of the handle. Only the
place options that may have changed need to be updated. That's all there is to
it.

proc stuff {root file} {
 text $root.text -yscrollcommand \
 "$root.scroll set"
 scrollbar $root.scroll -command \
 "$root.text yview"
 pack $root.scroll -side right -fill y
 pack $root.text -fill both -expand 1
 $root.text insert 0.0 [exec cat $file]
}

To test it out, we need something to put in the top and bottom halves. We'll
create a procedure stuff that displays the contents of a file in a text widget with
a scroll bar.

adjust .5
stuff .bottom $env(HOME)/.login
stuff .top $env(HOME)/.cshrc

Now fill each pane, adjust the two halves, and off you go.

What a Drag

For our second example, we'll use the placer to permit a user to interactively
“drag and drop” a widget within a window. When the user selects a widget, by
clicking on it with the mouse, we'll lift it up so it hovers over the window, and
casts a shadow as we drag it around. Releasing the mouse drops the widget in
its new location.

label .label -text "drag me"\
 -borderwidth 3 -relief raised
frame .shadow -bg black
lower .shadow .label
place .label -x 50 -y 50
set hover 5

We'll start by creating a widget to drag, .label, and its shadow .shadow. We'll
use lower to make sure the shadow is always “below” the widget, and we'll start
.label in an arbitrary location, 50 pixels from the top left corner of .. The

variable hover controls how high we'll lift the widget above its window as we
drag it.

bind .label <1> {
 array set data [place info .label]
 place .label -x [expr $data(-x) - $hover]\
 -y [expr $data(-y) - $hover]
 place .shadow -in .label -x $hover -y $hover \
 -relx 0 -rely 0 -relwidth 1 \
 -relheight 1 -width -2 -height -2 \
 -bordermode outside
 set Rootx [expr %X - [winfo x %W]]
 set Rooty [expr %Y - [winfo y %W]]
}

When we first click on .label, we need to lift it up, add its shadow, and compute
where it is relative to the root window so we can figure out how to move it. The
array set command (new in tcl7.4), takes name-value pairs and creates an array
from them. Fortunately, the place info command happens to report the current
place options in the form of name-value pairs, permitting us to access and
modify individual place options using array accesses. The first place command
simply moves the widget up and to the left $hover pixels as we first press the
mouse. I think the second place command, which positions the shadow, uses
every available place option!

The -in option, which would more accurately be described as “relative to”,
causes all locations specified in .shadow to be relative to .label, instead of .,
which would be the default. The -x and -y options, when added to -relx and -
rely, position the shadow where .label was before we $hovered it. The -relwidth

and -relheight options make .shadow the same size as .label, and then the -
width and -height options make the shadow a little smaller, so it will appear
farther away. Finally, the -bordermode option instructs the placer to include the
border of .label when computing the sizes for -relwidth and -relheight.

Finally, we compute the location of the mouse cursor, in pixels, relative to the
top left corner of the root window (Rootx, Rooty), so it will be easier to figure
out how to track .label with the mouse.

bind .label <B1-Motion> {
 place .label -x [expr %X - $Rootx] \
 -y [expr %Y - $Rooty]
}

As the mouse moves, we reposition the widget to follow along. Because we
“placed” the shadow relative to the widget (using the -in option), it tags along all
by itself.

bind .label <ButtonRelease-1> {
 array set data [place info .label]
 place .label -x [expr $data(-x) + $hover] \
 -y [expr $data(-y) + $hover]
 place forget .shadow
}

When we release the mouse button, the same array set trick as before is used
to “drop” the widget back on the window, then remove the shadow.

As you can hopefully see from these two simple examples, the “placer” can be a
powerful tool for the dynamic placement of widgets in Tk.

Stephen Uhler is a researcher at Sun Microsystems Laboratories, where he
works with John Ousterhout improving Tcl and Tk. Stephen is the author of the
MGR window system and of PhoneStation, a TCL-based personal telephony
environment. He may be reached via email at Stephen.Uhler@Eng.Sun.COM.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Stephen.Uhler@Eng.Sun.COM
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Trade Shows

Randolph Bentson

Arnold Robbins

Issue #16, August 1995

While Linux Journal went to DECUS in Washington DC, Randy Bentson attended
the Internet World Show and Arnold Robbins took in the sights of the East
Coast Comdex.

Comdex and Internet World

While Linux Journal went to DECUS in Washington, DC, Randy Bentson attended
the Internet World Show and Arnold Robbins took in the sights at East Coast
Comdex.

by Randolph Bentson and Arnold Robbins

EAST COAST COMDEX

East Coast Comdex is held annually, with the Windows World show, at the
Georgia World Congress Center in downtown Atlanta. This is one of the world's
largest convention centers. Tens of thousands of people attend, literally from
all over the world, with a pretty high concentration of people from the
Southeast US. The show lasts four days, from Monday through Thursday.

If you come, don't attempt to drive to downtown Atlanta and park. Instead, take
MARTA, the local rapid transit system, to the CNN-Omni station, and follow the
crowds; it's a short walk.

Getting free tickets to see the exhibits is usually pretty easy. Chances are, if you
know a vendor displaying there, they can get you tickets. Later in the week, you
may even find free passes on the tables when you walk in. I had a press pass,
courtesy of Linux Journal, although both my company and my wife's company
had booths.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

It definitely pays to go on a day other than the first day. The lines to get your
badge are almost non-existent, which speeds up the process enormously.

Comdex is just enormous. Imagine two huge halls, each of which is bigger than
several football fields, packed end to end with display booths and people
wandering through trying to see everything. Imagine, if you will, thousands of
techno-nerds. Not just any nerds, but PC and Windows nerds. Along with the
size and the crowd comes the noise. The vendors often put on little stage
shows and demos. They all have microphones. They all have sound effects.
They all have music. It's almost impossible to think while wondering around
Comdex, much less have a conversation with your wife (particularly if your wife
is like mine, and talks softly).

It also pays to bring your lunch; the food is expensive there. The new owners of
Comdex gave out coupons for a free (small) drink, which was a nice touch.

What's Hot

There were very few, if any, really new or interesting items to be seen this year.
Comdex was more of the same old thing; Intel-based systems of various sorts
being predominant.

Some cute things: Panasonic had a laptop with a keyboard that raised up to
reveal a CD-ROM drive. There was another company showing a “remote” mouse
that could be used from up to 40 feet away.

The “hot” items were: 1) Windows 95. I'd say that over 95% of the vendors were
showing their product(s) working on Windows 95. Not too suprising at the
“Windows World” show, but discouraging to an old Unix hacker like myself. 2)
Internet. If a product could even be remotely tied into the Internet somehow, it
was. The BellSouth ISDN booth was jumping like hotcakes. IBM's booth had a
picture of a nun saying “I'm dying to surf the net.” The Internet has arrived, and
the masses are diving in. America Online even had a group of about 20
workstations all lined up so people could “test drive the Internet”. Gack. 3) CD-
ROM. You name it, somebody's got it on CD-ROM.

Fortunately, Comdex made a lot of the vendors clean up their acts; there
weren't any pornographic CD-ROMs visible (unlike last year, which generated a
lot of complaints).

It was also pretty clear that OS/2-Warp is an also-ran. I don't think I saw more
than 5% of the vendors touting their product running on OS/2.

Perhaps suprisingly, there were almost no PowerPC products. The ones I saw
were in the Apple booth, and there were PowerPC systems in the IBM booth.

There was some Linux at the show, but not much. A few vendors with Linux CD-
ROMs and such. The most visible Linux was at the bookstore in the lobby, with
several Linux books prominently displayed when you walked in, and on the
shelves. The O'Reilly books were the nicest looking.

Editorializing

Comdex has changed over the years. It used to be a show for the entire
computing industry. Once upon a time, you could find mainframe and mini-
computer vendors showing (anyone remember Vax VMS? DG AOS?). You could
find Unix vendors showing, like Sun. You also used to get lots of nice freebies.

It has changed. First of all, very few people were giving out toys, much less nice
ones. :-(. Secondly, it's a PC and Microsoft world out there. There were fewer
Macintoshs than I've ever seen, and much less Unix than usual.

Those companies who were trying to sell server based systems were selling
Windows NT, with Unix “also” available. This included companies like Pyramid,
and even DEC was pushing NT on the Alpha. It is no wonder that the Unix
vendors formed COSE, there really is something to be afraid of. It's a terrible
shame that Marketing Hype can sell so much Mediocrity to the public, but that
seems to be the reality.

The conclusion I'd draw for the Linux world is that if WINE is going to go
anywhere, it ought to concentrate on Windows 95 compatibility; i.e., some way
to run a Win32 binary under Linux. Skip the Win16 stuff; it'll be dead within a
year.

All in all, this year's Comdex was a disappointment. I usually enjoy it, but this
year I didn't. It was also a bit depressing to see so much Microsoft stuff
everywhere. I have high hopes for the free software world, but it's sobering to
see what a small part of the “industry” consists of free software.

On the other hand, there was some Linux. Great things can come from small
beginnings, and we're just at the beginning of the growth curve for self-
contained, reliable, usable, free software based systems. I hope that in five
years, my report from Comdex will tell a much different story.(Arnold Robbins)

THE INTERNET WORLD SHOW

Depending on your measure, Spring Internet World 95 was a great success or a
slight disappointment. With respect to its stated goal of presenting what is
happening on the Internet, it was excellent. While it can't yet boast the
attendence numbers of Comdex, 20,000 visitors and 190 exhibitors made this a
respectable conference and may well justify the claim of being the “world's

largest Internet conference.” It was held April 10-13 at the heart of Silicon Valley
in the San Jose Convention Center, thus it should come as no surprise to learn
that the registration was flooded with people who just took some time off from
work to check out the show.

Many of the major hardware and software vendors were there. Present were
the the traditional vendors: Apple, Dell, DEC, IBM, Microsoft, NCD, Silicon
Graphics, Sun, and Tandem. In addition, there were also strictly network
product vendors: 3Com, FTP Software, Rockwell, Telebit, Wollongong, and
ZyXEL. (I know I'm going to catch flak for this—I'm sure to have missed
someone in my list—but I'll press on.)

What made this different from other trade shows I've attended was the focus
on user-level access the Internet and the newly discovered World Wide Web.

Everyone was touting some feature of their product that allowed one to
compose, access, view, process, or control access to the web. I was amazed by
the number of hypertext and HTML text preparation tools that were being
displayed. I'll refrain from citing who did what, but some of the low end
products were far from magic—I keep seeing the guy behind the curtain. If I
were a cynic I would claim the pencil manufacturers were there to show how
pencils could be used to prepare hypertext, but that would be an exaggeration.

Since I've worked with mark-up languages such as troff and TeX, I don't find
HTML at all difficult. In fact, I find it is missing many of the features I've come to
expect of such a language. (Apparently so do others. The proposed HTML 3.0 is
a move in the right direction.) This viewpoint renders a lot of the HTML
preparation tools rather ho-hum.

Still, there were some products which were close to magic and some other
products which will have increased importance in our lives. Specifically, I found
the integration of database searches with a web server to be a most natural
outcome. Most applications have two elements: the user interface and solving
the problem itself. The Common Gateway Interface is an elegent method of
using the http daemon and the WWW browser to implement a GUI interface for
user application. There were a number of vendors who offered WWW
integrated database products.

Another class of products were security related. As we become more
thoroughly connected to the network we also become more exposed to
malicious intrusions on our systems. By my count there were eight vendors
whose sole product was firewall or other security hardware or software. In
addition, products such as Secure HTTP, will be integrated by Netscape to give
secure interactions over the network.

Of course, since this was a networking exhibition, there were plenty of
representation by Internet service providors. There were a number of nation-
wide and international vendors present: America Online, BBN Planet, Netcom,
Prodigy Services, PSInet, SPRY, and UUNET. It was also interesting to note the
number of local providers at the show. If this is any indication, you should have
lots of choices for Internet service in any major city.

Finally, I was gratified to see the number of traditional publishers who have
recognized that the Internet is a marketplace that they should serve. Present
were divisions of Dun & Bradstreet, MacMillan Publishing, San Jose Mecury
News, O'Reilly & Associates, Random House, Van Nostrand Reinhold, and John
Wiley & Sons.

So what was the disappointment? The poor Linux visibility. I guess this is a side
effect of the commercial nature of the show. After all, how can the developers
of Linux, TCP/IP, Lynx and Mosaic justify the expense of renting booth space?

This led me on a quest—that I didn't complete—looking for Linux inside. I
started at one end of the exhibition hall and went from booth to booth asking
about Linux support. I found some solace in the responses. A number of
vendors said it wouldn't be long before a Linux version of the product would be
available -- after all, that's what the developers inside the companies were
using at work or at home. There's a chance that next year even more products
will have “Linux” in their list of supported systems, Randolph Bentson

Randolph Bentson (bentson@grieg.seaslug.org) has been programming for
money since 1969-writing more tasking kernels in assembly code than he wants
to admit. His first high-level language operating system was the UCSD P-system.
For nearly 14 years he has been working with Unix and for the last year he's
been enjoying Linux. Randy is the author of the Linux driver for the Cyclades
serial I/O card.

Arnold Robbins (arnold@gnu.ai.mit.edu) is a professional programmer and
semi-professional author. He has been doing volunteer work for the GNU
project since 1987 and working with Unix and Unix-like systems since 1981.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bentson@grieg.seaslug.org
mailto:arnold@gnu.ai.mit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What's GNU

Arnold Robbins

Issue #16, August 1995

This month's column takes a brief look at the GNU coding standards, a
document that describes how to write and package GNU software.

What is it that makes a GNU program a GNU program? What makes GNU
software “better” than other (free or non-free) software? The most obvious
difference is the GNU General Public License (GPL), which describes the
distribution terms for GNU software. But this is usually not the reason you hear
people saying “Get the GNU version of xyz, it's much better.” GNU software is
usually more robust, and performs better, than standard Unix versions. We're
going to look at some of the reasons why, and at the document that describes
the principles of GNU software design.

The GNU Coding Standards describe how to write software for the GNU project.
It covers a range of topics. As of this writing, related chapters are not grouped
together, so we'll look at the chapters by topics, not in the order they appear.

You can find the GNU Coding Standards in the Autoconf distribution, currently
autoconf-2.3.tar.gz, from your nearest GNU mirror site. An ASCII copy
(standards.txt) should also be available as a standalone file from your nearest
GNU mirror site, as well.

Intellectual Property Rights

The first issue discussed has to do with intellectual ownership. If you're GOING
to write a GNU program that re-implements a Unix utility, don't look at the Unix
source code! (Source code licenses are harder and harder to get these days, so
this is less of a problem than it was 10 years ago.) The other issue has to do
with copyright assignment. If you're going to write or work on a GNU program,
you have to either declare your work to be in the public domain, or assign the
copyright in it to the FSF. (Small changes don't have to do this, so don't be
scared off by this if you want to submit a bug fix. On the other hand, if you

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

enhance GNU [cw]find[ecw] so that it can read cpio archive tapes, you probably
would have to do paperwork. Even this is usually painless.)

You can, of course, write a program from scratch, release it under the GPL, and
keep the copyright. You may also generate your own changes to a program for
which the FSF owns the copyright, and distribute your version separately from
the FSF's version, under the GPL. Assigning copyright to the FSF is only a
necessity when you want your changes to be folded back into the main
distribution of a GNU program.

Program Design

A number of chapters provide general advice about program design. The four
main issues are compatibility (with standards and Unix), what language to write
in, whether to rely on non-standard features of other programs (in a word,
“don't”), and what “portability” means.

Compatibility with ANSI, POSIX, and Berkeley Unix is an important goal. But it's
not an overriding one. The general idea is to provide all necessary functionality,
with command line switches to provide a strict ANSI or POSIX mode.

C is the preferred language for writing GNU software, since it is the most
commonly available language. In the Unix world, ANSI C is only now becoming
common (sad but true), so K&R C is still the most widely portable dialect. This is
changing rapidly though, with C++ becoming more commonplace. One widely
used GNU package written in C++ is groff (GNU troff). With GCC supporting C++,
it has been my experience that installing groff is not difficult.

The standards state that portability is a bit of red herring. GNU utilities are
ultimately intended to run on the GNU kernel with the GNU C library. But since
the kernel isn't finished yet, and users are using GNU tools on non-GNU
systems, portability is desirable, just not paramount. The standard
recommends using Autoconf (about which I one day hope to write a column)
for achieving portability among different Unix systems.

Program Behavior

The next group of chapters provides general advice about program behavior.
We will return to look at one of these chapters in detail, below. These chapters
focuses on how to design your program, how error messages should be
formatted, how to write libraries (make them reentrant), and standards for the
command line interface.

Error message formatting is important, since several tools, notably Emacs, use
the error messages to help you go straight to the point in the source file or data
file where an error occurred.

GNU utilities should use a function named getopt_long for processing the
command line. This function provides command line option parsing for both
traditional Unix style options (gawk -F: ...) and GNU style long options (gawk --

field-separator=: ...). All programs should provide --help and --version options,
and when a long name is used in one program, it should be used the same way
in other GNU programs. To this end, there is a rather exhaustive list of long
options used by current GNU programs.

Writing C Code

The most substantive part of the manual describes how to write C code,
covering things like formatting the code, comments, how to use C cleanly, how
to name your functions and variables, and how to declare, or not declare,
standard system functions that you wish to use.

Code formatting is a religious issue; many people have different styles that they
prefer. I personally don't like the FSF's style, and if you look at gawk, which I
maintain, you'll see it's formatted in standard K&R style. But this is the only
variation in gawk from this part of the coding standards (other variations will go
away in gawk 3.0, coming this year).

Nevertheless, while I don't like the FSF's style, I consider it of the utmost
importance, when modifying some other program, to stick to the coding style
already used. Having a consistent coding style is more important than which
coding style you pick.

What I find important about the chapters on C coding is that the advice is good
for any C coding, not just if you happen to be working on a GNU project. So, if
you're just learning C, or even if you've been working in C (or C++) for a while, I
would recommend these chapters to you, since they encapsulate many years of
experience.

Documenting Programs

Two chapters cover writing documentation for your program. The preferred
way is to write a manual using Texinfo, which was discussed in an earlier
column (Issue #6, October 1994). There is some nice advice in here about
writing manuals. And, as described earlier, Texinfo is an enjoyable language in
which to write documentation.

How to make releases

Finally, there are three chapters devoted to the mechanics of making a release.
These chapters discuss the conventions to use for Makefiles, how configuration
should work, and other generalities about how a release should work.

These chapters, together with the Autoconf manual, provide the needed
information for packaging up a program and making the final released tar] file.

What Makes A GNU Program Better?

We'll take a look now at the chapter entitled Program Behavior for All
Programs. This chapter provides the principles of software design that make
GNU programs better than their Unix counterparts. We will quote selected
parts of the chapter, with some examples of where these principles have paid
off.

Avoid arbitrary limits on the length or number of any
data structure, including file names, lines, files, and
symbols, by allocating all data structures dynamically.
In most Unix utilities, “long lines are silently truncated”.
This is not acceptable in a GNU utility.

This is perhaps the single most important rule in GNU software design, “no
arbitrary limits.” All GNU utilities should be able to manage arbitrary amounts
of data.

While this makes it harder for the programmer, it makes things much better for
the user. I have one gawk user who runs an awk program on over 650,000 files
(no, that's not a typo) to gather statistics. gawk grows to over 192 Megabytes of
data space, and the program runs for around seven CPU hours. He would
simply not be able to run his program using another awk implementation.

Utilities reading files should not drop NUL characters,
or any other nonprinting characters (including those
with codes above 0177). The only sensible exceptions
would be utilities specifically intended for interface to
certain types of printers that can't handle those
characters.

It is also well known that Emacs can edit any arbitrary file, including files
containing binary data!

Check every system call for an error return, unless you
know you wish to ignore errors. Include the system
error text (from perror or equivalent) in every error
message resulting from a failing system call, as well as

the name of the file if any and the name of the utility.
Just “cannot open foo.c” or “stat failed” is not sufficient.

Checking every system call provides robustness. This is another case where life
is harder for the programmer, but better for the user. An error message
detailing what exactly went wrong makes finding and solving any problems
much easier.

Check every call to malloc or realloc to see if it
returned zero. Check realloc even if you are making
the block smaller; in a system that rounds block sizes
to a power of 2, realloc may get a different block if you
ask for less space.

In Unix, realloc can destroy the storage block if it
returns zero. GNU realloc does not have this bug: if it
fails, the original block is unchanged. Feel free to
assume the bug is fixed. If you wish to run your
program on Unix, and wish to avoid lossage in this
case, you can use the GNU malloc.

You must expect free to alter the contents of the block
that was freed. Anything you want to fetch from the
block, you must fetch before calling free.

In three short paragraphs, Richard Stallman has distilled the important
principles for doing dynamic memory management using malloc. It is the use of
dynamic memory, and the “no arbitrary limits” principle that makes GNU
programs so robust and more capable than their Unix counterparts.

Use getopt_long to decode arguments, unless the
argument syntax makes this unreasonable.

Long options were mentioned earlier. Their use is intended to make GNU
programs easier to use and more consistent than the Unix versions. The
getopt_long function is a nice one; it provides you all the flexibility and
capabilities you may need for argument parsing. As a simple yet obvious
example, --verbose is spelled exactly the same way in all GNU programs.
Contrast this to -v, -V, -d etc.

Finally, we'll quote from an earlier chapter that discusses how to write your
program differently than the way a Unix program may have been written.

For example, Unix utilities were generally optimized to
minimize memory use; if you go for speed instead,
your program will be very different. You could keep
the entire input file in core and scan it there instead of
using stdio. Use a smarter algorithm discovered more
recently than the Unix program. Eliminate use of

temporary files. Do it in one pass instead of two (we
did this in the assembler).

Or, on the contrary, emphasize simplicity instead of
speed. For some applications, the speed of today's
computers makes simpler algorithms adequate. Or go
for generality. For example, Unix programs often have
static tables or fixed-size strings, which make for
arbitrary limits; use dynamic allocation instead. Make
sure your program handles NULs and other funny
characters in the input files. Add a programming
language for extensibility and write part of the
program in that language.

An excellent example of the difference an algorithm can make is GNU diff. My
computer's previous incarnation was an AT&T 3B1; a system with a MC68010
processor, a whopping two megabytes of memory and 80 megabytes of MFM
disk.

I did (and do) lots of editing on the manual for gawk, a file that is currently over
17,000 lines long (although at the time, it was only in the 10,000 lines range). I
used to use diff -c quite frequently to look at my changes. On this slow system,
switching to GNU diff made an extremely noticeable difference in the amount
of time it took for the context diff to appear. The difference is almost entirely
due to the better algorithm that GNU diff uses.

Summary

The GNU Coding Standards is a worthwhile document to read if you wish to
develop new GNU software, enhance existing GNU software, or just wish to
learn how to be a better programmer. The principles and techniques it
espouses are what make GNU software the preferred choice of the Unix
community.

Epilogue

As mentioned, the released version of the standards covers its topics in a
rather haphazard order. As a result of working on this column, I volunteered to
re-organize them into several related chapters. This new version may be
available by the time you read this article; keep an eye on your nearest GNU
mirror site.

Arnold Robbins is a professional programmer and semi-professional author. He
has been doing volunteer work for the GNU project since 1987 and working
with UNIX and UNIX-like systems since 1981. Questions and/or comments can
be sent by e-mail to arnold@gnu.ai.mit.edu

Archive Index Issue Table of Contents

mailto:arnold@gnu.ai.mit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Sendmail: Theory and Practice

Phil Hughes

Issue #16, August 1995

Yes, the answer is there, but the book is more than many people need or want
to get into - sort of like reading the National Electrical Code book to find out
how to replace a fuse.

• Author: Frederick M. Avolio & Paul A. Vixie
• Publisher: Digital Press
• ISBN: 1-55558-127-7
• Price: $29.95
• Reviewer: Phil Hughes

Many of us who have had to configure Sendmail think of it as something similar
to fixing the plumbing in our house - it has to be done, we sort of know how to
do it and we wish we could ignore it and it would go away. Yes, Sendmail is
powerful and, for most systems, necessary, but it is complicated. To make
matters worse, you don't have to make changes often enough so that you
actually learn how to do it right and remember it.

When Eric Allman's book on Sendmail was published, I got a copy and was
immediately intimidated. Eric is the author of Sendmail and his book is
thorough - tipping the scales at almost 800 pages. Yes, the answer is there, but
the book is more than many people need or want to get into - sort of like
reading the National Electrical Code book to find out how to replace a fuse.

If this same thing happened to you, Sendmail: Theory and Practice may be the
right answer. In 262 pages Avolio and Vixie address just what the book title
says: theory and practice. It takes the fear out of Sendmail configuration by first
explaining the practical considerations involved in electronic mail transfer and
then goes on to show how to configure Sendmail to accomplish the tasks.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The first 90 pages cover practical information about addressing over networks,
including the problems of mixed-type addresses (that is, a combination of a
uucp address and domain address). These pages also cover mail user agents,
their interface to Sendmail and how aliases work in Sendmail. Or, more
correctly, how to use Sendmail aliases to do what you need in a reliable and
secure fashion. Again, the emphasis is on practical application.

The next chapter offers the basics of macros and rules. This is presented in a
practical and non-threatening manner with an emphasis on what you need
rather than a lengthy look at all the capabilities.

The next chapter addresses the IDA Kit extension to Sendmail. It does a good
job of showing how the DBM tables of the IDA kit tie into the rules in the
sendmail.cf file. While I personally had hoped I didn't need to know this, the
book gives enough information to help you understand this without getting
bogged down in theory.

Even if you have what looks like a working Sendmail, the chapter on
“Maintenance and Administration” will help you feel a lot better about your
relationship with Sendmail. After going through all the files related to Sendmail
and all the command line options, it looks at things you can check, why you
might want to check them, and how to check them. For example, a section on
queued mail offers five steps to help identify why mail is remaining in the
queue and what to do to get it on its way.

The book ends with a series of appendicies that offer resources or pointers to
resources that you need. These include summaries of the options and mailer
flags for the sendmail.cf file, sample sendmail.cf files, logging and debugging
information, and even the form to be sent in to the InterNIC to register a
domain.

The main shortcoming of the book is that it does not address Release 8 of
Sendmail. The authors claim that the philosophy of R8 is the same as R5.
Certainly the added functionality in R8 is not covered. They may be absolutely
right in their decision, however. This book contains plenty to keep you thinking,
and adding complications of R8 could have detracted from the book's usability.

If you are afraid of Sendmail but have to deal with it, this is the right book to
get. It doesn't tell you everything but it does tell you more than most systems
administrators need to know and it is presented in a very practical manner
from the point of view of two people who see Sendmail as a tool and have
learned to use that tool to accomplish their tasks.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #16, August 1995

Readers sound off.

Monte Told Amy ...

I'd like to congratulate you on getting the job of planning the layout of Linux
Journal....and I'd like to also say that it was much more enjoyable to read this
time around. Thank you. —Monte Corbit monte@intellinet.com

And We Have Content ...

I also wanted to compliment you guys on the excellent content level of LJ. —
Tom MorseLernout & Hauspie Speech Products tmorse@lhs.com

Can't Please Everyone

It is seldom that an editor asks an opinion of their “art director”.
Understandably since you have a layout person doing the work that an art
director should your requests for an opinion is a cry for help.

Judging from the recent changes this cry of help seems justified. Your magazine
was brought to my attention by my husband, one of your subscribers. His
response was, “Look how amateurish this is.”

I would like to start with the visual on page 19. This is a bad shot. It may have
been the only one that you had. Why wasn't it cropped differently or the
background replaced? Did Amy like the hair sticking out and the UFO by his
right shoulder?

The lime green? Was it inspired by the well designed ad on page 29? Do you feel
it works as well as on page 6 & 7? Was the Linux color on page 3 chosen from
the ad on page 59? Do you feel the two colors complement each other well on
page 3?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:monte@intellinet.com
mailto:tmorse@lhs.com

In newspapers rough sketches lend well to the 80 line screens. In magazines as
in your case the rough thumbnail sketches appear badly drawn and quite
wobbly. Are you trying to give the impression that your magazine can not
afford an illustrator?

Page 10. Why is 'Stop the Presses' so big? Is it to compete with the even larger
horsey Headlines throughout your magazine? Doesn't by Phil Hughes look so
small in comparison floating in all that white space. It gets a bit lost just hanging
there. Shouldn't the three be married in a design unity? Stop the presses? (see
page 116 of June Wired Magazine)

Why is the logo of your Magazine treated differently between the cover and
page 3? Why is the date under Journal? Was the page intended to be smaller or
did Amy feel the white space and the line added something? Why is the XBase
lines so big on the cover? Do you feel that the cover breaths well of is it a clutter
on design elements thrown on the page to fill up all space?

My suggestion is send Amy on a Design course or two. Perhaps if she didn't
race through the design she may have done a better job. But remember you
get what you pay for. —Most sincerely,Cinna cinna@interport.net

The Final Vote ...

Kudos on the new look for LJ! Pass on my appreciation to Amy Wood. Keep it
up. —Andy Cook andy@anchtk.chm.anl.gov

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cinna@interport.net
mailto:andy@anchtk.chm.anl.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

ELF Released for Linux

Michael K. Johnson

Issue #16, August 1995

What does that mean to the average Linux user? What is ELF, anyway?

The ELF tools for Linux have just been publicly released, after months of
testing. What does that mean to the average Linux user? What is ELF, anyway?

ELF is a advanced new binary file format for executables, libraries, and object
files (which are used to create libraries and executables). It is the native binary
file format of Unix System V Release 4, and is far more powerful and flexible
than the original binary file format used on Linux, which is often called “a.out”.

Why do I care?

The people who really care about this are the programmers who make it
possible for you to run a Linux system. They care because ELF makes several
things much easier for them to do, and even makes some things that were
previously practically impossible easy. This will allow them to develop better
and more interesting software—which every Linux user gets to use.

Also, the ELF shared libraries are much more flexible than the old a.out DLL
shared libraries which have been the Linux standard for a few years now.
Backwards compatibility will be much easier to maintain with the ELF libraries,
which will give all Linux users a more stable platform. “Wizardry” should no
longer be required to upgrade libraries or compilers, once you are using ELF.

Do I want to upgrade?

Probably not yet. If you use Linux because it is an adventure, or to learn, then
you probably do want to upgrade. However, if you just want to get work done,
then you probably do not want to upgrade quite yet.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

There are two ways to upgrade. One is to simply install the ELF libraries, and if
you compile your own kernels, make sure that your kernel has been compiled
with ELF binary support. This will allow ELF binaries to run on your system with
no further work on your part. The first problem with this is that using both the
older a.out shared libraries and the ELF shared libraries at the same time will
use more memory than using all binaries of one type or the other, and
therefore will almost certainly slow your system down. Therefore, this is only
recommended it you want to be able to run occasional ELF binaries. The
second problem with this is that you are required to rearrange some files in
order to install the ELF libraries.

The other way is to wait until your favorite distribution of Linux is available in
an all-ELF form, and re-install your system. As drastic as this sounds, it will lead
to higher performance, especially if you want to run ELF binaries regularily.
Hopefully, most distributions will make this easier than it sounds, perhaps by
having an option to only install binaries. Distributions with package
maintenance options should give you the option to uninstall your old packages
and install new ELF-based ones without a fully reinstalling your system.

You will probably want to wait to reinstall your system until your favorite
distribution has provided a (relatively) easy way to upgrade. If you want to use a
new program available only in ELF (i.e., play with a new toy), your time will
probably be better spent simply installing the new libraries. Unfortunately for
normal users, it is not as easy as making a directory and dropping a few files in
it. It requires installing a new ld.so and moving libraries. There has been some
talk of a script to automate the process, and it will probably have been written
by the time you read this, but I can't tell you where to get it because as I write
this it doesn't yet exist.

This isn't wizardry?

The unfortunate fact is that to get to the state where it is so much easier to
upgrade will require harder work initially. If you are patient, someone else may
do the work for you; either someone who writes a generic upgrade script (this
is only really possible thanks to the Linux File System Standard, which was
explained in the July issue of LJ) or the maintainer of your favorite distribution.
But there is no free lunch; either you have to do the work, or someone else
does. The difference with ELF is that once that difficult work has been done
once, the next time you need to upgrade your shared libraries, it will be easier
than it ever has been—for whoever does the work.

Update on Linux/Alpha

For those following the Linux/Alpha port, Jim Paradis of DEC recently
announced that the networking code in the Alpha port is starting to work, a few

weeks after work on networking commenced. This rapid progress, which has
been characteristic of the Alpha port, suggests that DEC is likely to meet their
projected fall release of the full system.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Novice to Novice

Dean Oisboid

Issue #16, August 1995

As part of a regular series by and for novices, Dean gives a novice's point of
view on some of the many spreadsheet and text editing programs that run
under Linux.

This series has aimed at the Unix beginner who has experience with MS-DOS. I
have assumed that such a person is exploring Linux primarily to learn Unix
easily, cheaply, and conveniently. This person may buy or download Linux, get
it running, and probably focus on the main veins—Networking, X-Windows,
GNU C/C++, etc.—without really exploring some of the other offerings such as
sc, oreo, or xfractint. I originally dismissed these programs, thinking they
couldn't have much substance being freeware and certainly couldn't compare
to what exists in DOS or Windows.

Then I realized that these freebies weren't necessarily equal to the latest

versions of commercial programs like Lotus-123 or WordPerfect but perhaps
would be comparable to older versions. And I realized that, just like in DOS/
Windows, these freeware and shareware programs served to fulfill an
applications void or to present inexpensive alternatives to their commercial
counterparts or came into existance because they were fun and a challenging
exercise to develop.

This article will be the first of a small journey to seek out these other programs
and see what they have to offer. I will concentrate on three main topics:
spreadsheets and text editors, databases, and seredipity. The general focus will
be towards business applications and things that would impress someone
visiting from a DOS/Windows environment.

For the majority of these programs, a major advantage over commercial rivals
is that the source code is included. Linux lovers already know of that luxury.
Unfortunately, that advantage usually dissipates with the need to compile the
source, a task that brings anguish to many novices. As a note of reassurance to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

other novices, I've found that recompiling isn't always a headache. With a swap
file active to boost memory, I've had few problems with compiles. Many of the
glitches I've had occur when the make files expect certain files in certain places;
that is, when file locations are hardcoded in. And, of course, it helps to read the
README files.

A point to remember: many of these programs undergo constant revision and
by the time this article sees the light of print newer versions may have been
released. With the updates, changes may be made to installation routines or
requirements. Consequently the procedures or problems I describe during
installing or bugs that I find may not always carry over to newer releases.

My goal is to see how these programs compare to known DOS/Windows
counterparts, not to imply that either operating system is better, but simply to
provide a frame of reference.

Finally, if no installation option was available from Slackware I unarchived these
programs under /usr as those more experienced than myself in Unix have
recommended.

Let's snoop around, shall we?

Interlude: The Agonies of Obsolescence

I realized that my copy of Linux from October 1994 was old. Factor in the time
for publishing preparations and I was committing a grave disservice. It was time
to upgrade to Linux 1.2.1.

Although I had been using Morse Telecommunications' Slackware Professional
2.1 I decided to try another Linux offering. Highly recommended, and what I
tried, is InfoMagic's Linux Developer's Resource. This 4-CD monster is an
amazing bargain. Archives of Sunsite, TSX-11, and GNU, “live” Slackware, tons of
everything else, and best of all: a great price. For the novice, the package may
be too overwhelming—there's only a little manual for installation. (Other
documentation is on the main CD. InfoMagic offers a beginning package
—“Linux Toolbox”—that looks pretty good and comes with a variety of printed
help.)

I have two complaints. The first is when using the Windows Boot/Root disk
maker routine of the Distribution. The manual says that the program will let
you choose UMSDOS as a Root option but I didn't see one and I had to create
one manually from the CD. Not a big deal and certainly not heart attack
inducing.

The second complaint, not specific to InfoMagic's product, is far worse, but it
only applies, I believe, to those having a Sony cdu31a/cdu33a CD-ROM. The
auto-detect function was removed or disabled from the kernels. This means
that even when you specifically choose the cdu31a kernel from the “Q” disks or
recompile the kernel your CD-ROM still will not be recognized. At least it did not
for me. Why the decision to remove this chunk of code which worked in earlier
versions, I don't know. But I went through Linux-novice hell to get Linux
working again.

[The reason that cdu31a/33a autodetect support was removed is that the only
possible way to autodetect these drives is so dangerous that detecting it has
the potential to hang the computer at boot. This was causing immense troubles
for thousands of people without Sony CD-ROM drives, and so the autodetect
capability had to be removed, and it is no longer part of the standard Linux
kernel. —ED]

A positive change is in the X-Windows configuration routine. Now it does all the
dirty work. You do not have to manually edit any files afterwords. As before,
however, you will need all the information about your monitor and video card,
but the entire process is easy and quick. Kudos!

Spreadsheets

sc (6.21, on disk set 'AP') and oleo (v0.03.2, from Sunsite) are both simplified
spreadsheets similar to early version of Lotus-123 or Excel. Both programs
have a fair variety of functions but lack the bang! of their MS-DOS counterparts.
I had no problems installing either one because binaries were included in the
archives. Both ran without fault. The problems I did have were primarily related
to cursor movement. I'm spoiled; I like to use the cursor keys and PageUp and
PageDown. Both programs used keys and combinations that may be familiar to
Unix users, especially Emacs users, but aren't familiar to this Novice. For
example, the Lotus-123 '/' command didn't bring up the menu. Also you can't
just type a number into a cell; you must first hit the '=' key (like Excel). I received
an out of memory error in sc when I tried to get the cursor to (g)o to cell
zz3000. Sure I was running sc through X-Windows but the swapfile was active.
Like I said, I'm spoiled.

xspread (1.1L2, from Sunsite) is an X-Windows spreadsheet based on sc. Like sc
the data is entered via '='. Unlike sc '/' does bring up a Lotus-123-like menu. If
you had to use any of the freeware spreadsheets mentioned this would get my
recommendation, simply because of the Lotus-like menu.

Text editors

vi and Emacs (GNU version) are the two most popular and renowned text
editors in Unix. Most of the following appeared on the main Slackware CD and
had installation scripts available.

vi is on most every system and is a useful compact program, though I don't care
for it personally. The commands and three operating modes aren't the most
intuitive—not that DOS's edlin fares better by comparison (though DOS's newer
edit does shine). My advice to novices is to learn it just in case. Again, this
program is everywhere so it helps you to have at least a basic understanding of
how to work it.

GNU emacs (19.27, on disk “E”) is not a program, it's a lifestyle. Either you love it
because it can do almost anything or you hate it for its obscureness. I know it
overwhelms me. The X-Windows version is amazing. It has a menu bar to make
things easier and the menu choices are bizarre and unique. You can read your
mail or news, learn from the tutorial, search by most anything. Choosing
calendar lets you play with Mayan, Islamic, Hebrew, and some other dates.
“Moon phases” is an option. A diary is available. As for word processing I didn't
think it so hot. In X-Windows, I expected the ability to change fonts or typesizes
and there was no obvious way to do so. Comparing emacs to Microsoft's Word
for Windows will show even greater inconveniences for the would-be Unix word
processor. But emacs can apparently do so much for so many types of people
—programmers, writers, e-mail readers—that to focus on just one area doesn't
quite give it a fair appraisal.

[The reason that it doesn't compare well with work processors is that it isn't
one. Even in the DOS and Windows, world, programmers don't use Word for
Windows to write the programs, nor do they use Brief to write theses, as a
general rule—Ed]

A mild warning: if you don't have the option to run it from CD, expect emacs to
use a little over 20 megs of your hard drive.

And that's all I will say about vi and emacs. If you want more in depth
information about any of the programs look for HOW-TO's, FAQ's, and books.
Linux Journal had an article about customizing emacs in the September 1994
issue. A good basic intro to vi is in Matt Welsh's “Linux Installation and Getting
Started” guide.

A quick aside: I don't care for vi but I use it; I like the X-Windows version of
emacs but I don't use it yet. In general, I find the non-X-Window command
structure of the emacs programs too arcane. In part, this is because I'm coming
over from DOS where most text editors have available the Wordstar-compatible

commands or where most everything is mouseable. Since I use a “modern”
word processor, many of the Unix programs I found seem outright brutal. For
me <F1> should always be the help key, not some ^h-? combination requiring
three hands.

Emacs clones

Lucid Emacs (19.10) is a clean variant of GNU Emacs and is very nice. Unlike the
GNU version it doesn't bombard you with a variety of unusual options. It
appears to focus on basic text editing and that's it! Cursor key and mouse
movement and all the other basics are there. The one immediate nitpick I
discovered is that when you change the font or type size for a sentence, word,
or a block, all the text in the file gets changed. [This is because Lucid Emacs, like
GNU Emacs, is a text editor, and you are changing the font that the whole file is
displayed in—Ed] Like GNU Emacs, Lucid will eat up about 20 megs of hard
drive space so you may want to choose between the two and/or run it from the
CD.

jove (4.14.10, on disk “AP”) stands for “Jonathan's Own Version of Emacs”.
Unfortunately I couldn't explore whatever differences exist between this and
the real emacs since I'm not an expert user of emacs. One obvious difference is
the amount of hard drive space used. jove doesn't come close to the over-20
megs that emacs consumes. Other than that, the same annoying obscure
commands are present.

vi clones

vim (3.0, on disk “AP”) stands for Vi IMproved. I've already stated that I'm not
enthused about vi. Sadly, vim doesn't improve my opinion. It may be
improvement over vi but it still doesn't make the commands any more intuitive
or the vi idea any more palatable.

fpted is another clone. Unfortunately I couldn't really try it because it crashed. It
looked like, at least, a help menu was easily available.

celvis required compiling, which produced a multitude of warnings. Yet it ran
without any apparent problems. A unique aspect to this clone is that with the
proper terminal you can write in Chinese.

vile and xvile for X-Windows are yet more vi clones. I liked these two because of
the highlight bar at the bottom which, in part, clearly tells the command for
help. I keep focussing on help because for novices it is perhaps the most
important command to know. Considering that many of these programs do not
include help files or tutorials, a menu bar saying that help is ^h-? or something
is a great benefit.

nvi (1.03) is—guess what—yet another clone of vi but without a helpful menu
bar at the bottom. [It's the official “new vi” from Berkeley—Ed]

xvi needed compiling which I passed on. My guess is this program is yet
another variant on vi and will run under X-Windows.

Other editors

jed (0.96, also on disk “AP”) is a program that I like. It uses the cursor keys for
easy movement. There's a menu at the top and another available that appears
at the bottom when you hit ^h-?. However, one warning about that: option 6
will not exit you from the secondary menu but from entire program! [Jed can
also use Emacs, EDT, and Wordstar keys, and the curser keys work the same no
matter what keyset you are using, so most people will be comfortable with it
one way or another—Ed]

joe (2.2, disk “AP”) is a program I also like but not quite as much as jed. The
screen is cleaner, not as cluttered with a help menu, just a simple bar at the
top. joe uses Wordstar-like commands so I had no problems with cursor
movement and other commands. The help was a bit tricky. ^k-h to turn it on
but to page through required an awkward ^[-. or ^[-, (for backwards).

ed stands for “standard editor” and I couldn't stand it. This is a very small
program with no obvious help command. In fact, to figure out the commands
you have to read the source code; fine for hackers, not so good for novices.
[Even most hackers avoid this like the plague. It complains about errors with
only a question mark; the manual says, “Experienced users will usually know
what is wrong.” —Ed]

ez (7.0, ATK 6.3.1) provides a clean X-Windows Word Processor that apparently
can be used standalone or part of the larger Andrew system. This program was
covered in Linux Journal, issues 4 (August, 1994) and 5 (September, 1994). ez

certainly lives up to its name with mouse and cursor key control and a good
word processor with multimedia options. Despite its ease it didn't have any
obvious way to change fonts or type sizes, unusual for a program of this
quality. I discovered a window that had the information about fonts and
whatnot listed but again no obvious way to make changes.

[ez can edit documents of many different types transparantly. In order to
access the word processing features, you have to open the right kind of
document by giving the file the correct extension. Files ending in .d or .doc will
turn on ez's word processing capability, which will show up in obvious menus;
for instance, font changes are accessed through the “Font” menu—Ed]

crisp (v2.2e from the Sunsite CD) is an editor that is like emacs in that it has
great expandability, obscure commands, and can be used for programming.
Untarring the binaries produced a barrage of files including the two main
executables cr and xcr (for the X-Windows version). Upon startup of either you
get a window with an information bar at the bottom. For novices there is no
obvious help command. ^-h didn't work. crisp was the last package I looked at
and I was determined to at least figure some of it out. I used mc and finally
discovered user and programmer help files under /usr/local/lib/crisp/help/org.
The user.hlp file said Alt-h would give help but back in crisp it didn't; it gave
gibberish that told me I probably had an emulation problem. Enough, enough, I
resign. For Crisp this is apparently the last freebie version and they now have a
snazzy graphical offering. I hope it has an obvious help command.

Whew!!!

I probably missed a few spreadsheets and text editors while scrounging
through the CD's. My general impression is that for the spreadsheets the level
of the freeware is comparable to an early Lotus-123 or Excel. But the programs
work and will get you through your basic spreadsheet needs.

There are quite a few choices of text editors available with the majority of them
clones of either vi or emacs. My personal favorites are jed, joe, either X-
Windows version of emacs, and Andrew's ez. They get the job done fairly easily
and Emacs can apparently handle most anything. To conserve hard drive space,
I would probably choose GNU Emacs over Lucid or maybe have both runnable
off the CD. But to summarize my feelings: I guess I expected programs that
were more for word processing and for that I gained disappointment. Maybe
the WordPerfect demo would have met my expectation could I have installed
the beast. For word processing I would stay with what I have in DOS or perhaps
purchase a good commerical UNIX word processor. As a writer, I need
advanced features and none of the above programs really satisfied that
criterion, instead being better for producing ASCII files and for programming
environments.

[Projects are now underway to provide more word processing programs. We
will cover them in Linux Journal when they are ready for public consumption—
ED]

Dean Oisboid, owner of Garlic Software, is a database consultant, Unix
beginner, and avowed Diplomacy addict. He can reached at
73717.2343@compuserve.com.

Archive Index Issue Table of Contents

 Advanced search

mailto:73717.2343@compuserve.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

New Products

LJ Staff

Issue #16, August 1995

Interactive UNIX Guide, SEDIT and S/REXX for Linux and more.

Interactive UNIX Guide

Sunni Micro Lab announced The Interactive UNIX Guide for Linux. This is a
computer-based UNIX training system.

It includes 72 interactive tutorial sesssion covering 90 Unix utilities. $110 Cdn/
$80 USD.

Contact: Sunni Micro Lab, 1300 Britannia Road East, Suite 208, Mississauga, ON
L4W 1C8 CANADA. Phone: 905 795-9292. Fax: 905-795-9291.

Price CAN$110, US$80

SEDIT and S/REXX for Linux

Benaroya announced a Linux version of their SEDIT, S/REXX and S/REXX
Graphical Debugger products. The Linux version currently in beta test is
available for download along with versions for the other currently supported
UNIX™ platforms.

SEDIT is a UNIX text editor patterned after IBM's XEDIT mainframe editor. It
operates with a GUI under X windows or in character mode when X is not
suitable.

S/REXX implements all REXX language features described in the second edition
of Mike Cowlishaw's book, “The REXX Programming Language”, except that
numeric digits are limited to 15.

The downloadable software *and* a flat ASCII file version of the WWW
document is available via anonymous ftp from directory pub/sedit at

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ftp.portal.com. See either seditsrexxinfo.txt.gz or seditsrexxinfo.txt (same
content) for the descriptive material.

Introductory pricing for SEDIT or S/REXX starts at $99 or both for $160.

Contact in North America: Dave Morris, Barili Systems Limited,10873 W Estates
Drive. Cupertino, CA 95014, E-mail: sedit@shell.portal.com, url:
www.portal.com/~sedit

Outside North America: Benaroya, 31 Rue de Constantinople, 75008 Paris,
France, +33-1-47 33 33 24, FAX: +1 47 22 06 17

Price: SEDIT or S/REXX start US$99 each or both for US$160

Linux Internet Archives

Yggdrasil Computing announced a new “Linux Internet Archives”, a new four
CDROM containing the latest snapshots of the Linux FTP archive sites from the
internet, including: Slackware 2.2.0.1* **, Debian .93 beta, MCC 1.0+, mini-linux,
Jurix, Xdenu 2.0 and SLS, sunsite.unc.edu:pub/Linux*, tsx-11.mit.edu:pub/
linux*, ftp.x.org X11R6 archive*, prep.ai.mit.edu:pub/gnu, JE Linux (Japanese
Extensions), and Linux X software.

The disks also contain a snapshot of DEC Alpha Linux port (not a runnable
system), and the Internet RFC standards.

The disks contain Boot floppies with fixed version of fdisk for Slackware 2.2.0.1
(in addition to the original boot floppies). 4 CD Set - $19.95.

Contact: Yggdrasil Computing, Inc. 4880 Stevens Creek Blvd. Suite 205, San Jose
CA, 95129, Phone: (408) 261-6630 fax (408) 261-6631, E-mail:
sales@yggdrasil.com, www.yggdrasil.com

Price: US$19.95 for the four-CD set

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:sedit@shell.portal.com
http://www.portal.com/~sedit
mailto:sales@yggdrasil.com
http://www.yggdrasil.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Memory Allocation

Michael K. Johnson

Issue #16, August 1995

Memory allocation of some sort is required in practically any program, but in
the Linux kernel it is more complex than in user-lever code—for good reason.

Memory allocation in the Linux kernel is complex, because there are significant
constraints involved—and different ways of allocating memory have different
constraints. This means that anyone writing Linux kernel code needs to
understand the various ways of allocating memory, including the tradeoffs
involved. This makes for for more efficient use of memory and CPU time—you
can specify exactly what you need—but it also makes for more demanding
programming.

There are essentially five different ways of allocating memory in the kernel.
That's a white lie, but it is close enough to the truth for anyone who needs to
read this article to learn about kernel memory allocation. Three (which provide
dynamic allocation) are generally useful, and two (which provide static
allocation) are deprecated, and are mostly historical artifacts that should not be
used. We will discuss the advantages and limitations of the useful ways first,
and will only briefly mention the two deprecated ways at the end of this article
so that you know what to avoid.

Memory Allocation Strategies

There are a few rules that apply no matter what form of dynamic kernel
memory allocation you attempt to do. Whenever you attempt to allocate
memory in kernel space, you must be prepared for an allocation error. Always
check the value returned from the allocation function, and if it is 0, you will
need to handle it cleanly, somehow. User-space code can be terminated with a
segmentation violation if it ignores memory allocation errors, but the kernel
can easily crash, bringing down the whole system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

There are several common error-handling strategies. One strategy is to attempt
to allocate critical memory at the top of a function, where you are less likely to
have committed yourself and can more likely return an error cleanly. This is
usually the best way to handle the problem.

Another strategy, usually used together with allocation at the top of the
function, is to allocate an “easy” amount of memory for the memory
management system to provide, and then parcel it out for various purposes
during the life of the function, effectively doing its own memory management.
Several subsystems in the kernel do this, such as the high-level SCSI drivers and
the network code. Both include special memory allocation functions which are
only supposed to be used in those subsystem. These are not documented here,
under the assumption that documentation for those subsystems should
document subsystem-specific memory allocation routines.

Yet another strategy, which will only work if you are not in “critical” sections of
code, is to allow the kernel to schedule another process by calling schedule()

and then to try again later, when schedule returns. Note that some kinds of
allocation are not safe to call even once from within critical code; that will be
covered when we discuss the individual functions.

The fundamental rule is not to write algorithms that commit themselves to
completing without having been guaranteed the resources they need in order
to complete. Memory is one of the scarcest and most commonly needed of the
resources that must be guaranteed, and the only way to guarantee that
memory will be available is to allocate it.

Kmalloc

The kmalloc() function allocates memory at two levels: it uses a “bucket” system
to allocate memory in units up to nearly a page (4Kb on the i86) in length, and
uses a “buddy” system on lists of different sizes of contiguous chunks of
memory to allocate memory in units up to 128Kb (on the i86) in length. Only in
recent kernels has it been able to allocate memory in units over 4Kb in length,
and allocating large amounts of memory with kmalloc is very likely to fail,
especially in low-memory situations, and especially on machines with less
memory.

Kmalloc is very flexible, as demonstrated by its calling convention:

void * kmalloc(unsigned int size, int priority);

Note the priority argument: this is what makes kmalloc so flexible; it is possible
to use kmalloc in very constrained circumstances such as from an interrupt
handler. Interrupt-driven code, or code that cannot be pre-empted, but still

needs to allocate memory, can call kmalloc with the GFP_ATOMIC priority. This
will be more likely to fail, because it cannot swap or do anything else which
would cause implicit or explicit I/O to occur. Code with relaxed requirements,
which may legitimately be pre-empted, should instead call kmalloc with the
GFP_KERNEL priority. This may cause paging and may cause schedule() to be
called, but has a higher chance of success.

In order to dynamically allocate memory that can by accessed via DMA, the
GFP_DMA priority should be used. It does stress the memory system,
particularily if large amounts of memory are requested, and is quite likely to
fail. Try again. It should be noted that GFP_DMA is only likely to fail on system
with severe limitations on DMA transfers—such as computers using the
common ISA bus. Not all platforms are affected by this problem.

Memory allocated with kmalloc() is freed with kfree() (or kfree_s()).

Vmalloc

For allocating large areas of virtually contiguous memory that do not have to be
physically contiguous for interfacing with hardware, the new vmalloc() function
(with the same calling convention as conventional malloc()) will cause less stress
on the memory subsystem. It allocates possibly non-contiguous blocks of free
memory, and maps them into one contiguous space in high memory. It is less
likely to fail than kmalloc in many situations. It does not take a priority like
kamlloc does. It cannot be called from within an interrupt, and it may implicitly
cause pre-emption to occur.

Memory allocated with vmalloc is not DMA-able, even on systems without DMA
restrictions, because DMA under Linux assumes a 1-1 logical-physical page
mapping. This simplifies memory management in several ways, and is not a
severe restriction, because kmalloc provides a way to get DMA-capable
memory.

Just because it is addressed virtually does not mean that this memory is subject
to paging to disk, despite rumors to the contrary. The “virtual” in vmalloc refers
only to the addressing, which is not a 1-1 mapping from virtual to physical
address space, unlike the rest of the kernel. Swapping may be initiated to
provide the memory during a call to vmalloc(), but the vmalloced memory will
not then be swapped out.

Memory allocated with vmalloc() is freed with vfree().

get_free_pages

Now we learn what the GFP above stands for: get_free_page (well, perhaps
__get_free_pages) and simply specifies how exactly this function goes about
attempting to find free pages of memory. As you may guess, the same GFP_*

values are used for these functions as well.

This is the way to request an amount of memory that is easy for the memory
subsystem to allocate. This is the lowest-level—and therefore the lowest-
overhead—way of dynamicly allocating memory. If you need a chunk of
memory larger than half a page but no larger than a page (when deciding this,
be aware that page size varies from architecture to architecture; it is 4Kb on the
i86 and 8Kb on the DEC Alpha, for instance), especially if you only need it for
the duration of the current procedure, this can be the right way to go. Also, if
you are working on subsystem-specific memory management, you almost
certainly want to allocate your memory this way.

If you want only one page, call get_free_page(priority), where priority is
one of the GFP_* values. Of course, the same rules about which GFP_* value is
correct apply as for kmalloc. If you only want one page and don't care if it has
been cleared (set to all zero values), use __get_free_page(priority) instead,
since most of the overhead of allocating a page with get_free_page goes to
clearing the page.

If you need to allocate more than one consecutive page, you can do so,
although this is more likely to fail than allocating a single page, and the more
pages you wish to allocate, the less likely you are to succeed. You can only
allocate a number of pages which is a power of two.
__get_free_pages(priority, order) is called with the same priority
argument; the order argument gives the size according to the following
formula: PAGE_SIZE<\!s>*<\!s>2<+>order<+> so an order of 0 gives one
page, of 1 gives two pages, of 2 gives four pages, and so on (in current kernels,
at least) up to 5, which gives 32 pages, which on the i86 architecture is 128Kb.
PAGE_SIZE, as you may have guessed, is the standard macro for the number of
bytes in a page.

The __get_dma_pages() function works exactly like __get_free_pages(), except
that it allocates pages which are capable of being used for DMA, and it puts
more stress on the memory allocation system.

Pages allocated with get_free_page() or __get_free_page() are freed with
free_page(), and pages allocated with __get_free_pages() and __get_dma_pages()

are freed with free_pages().

Device initialization

Now we approach the deprecated strategies. They may be useful in some
circumstances, mostly in situations where they are the “easy way” to get a
driver working. In those cases, it is usually best to eventually find another way
to do the same thing, as neither strategy is very flexible. Neither strategy is
applicable to loadable modules.

When a device which is compiled into the kernel is initialized, it is passed a
pointer to available memory. It is then required to return a pointer. If the
pointer it returns is higher than the pointer it got, the memory in between the
two pointers is reserved for the device. That memory will be in the first few
megabytes of memory. The exact location will depend on how the kernel is
booted. This is (perhaps unfortunately...) documented in the Linux Kernel
Hackers' Guide.

Once allocated, that memory cannot be freed.

Memory initialization

This particular method is extremely deprecated, and is architecture-dependent
as well. It is possible to add a function call within the body of mem_init(), which
resides, for the i86 platform, in the file arch/i386/mm/init.c. In the middle of this
function, two functions for initializing SCSI and sound-driver memory are
provided. Also, arch/i386/kernel/head.S provides another platform-dependent
way to allocate memory. This is where initial memory management is set up.

If you understand these well enough to muck with them, you don't need my
help. These are last resorts for memory allocation, and you need to know
exactly what you need to do, and why the dynamic allocation strategies will not
work for you, before considering these “hacks”.

Michael K. Johnson is the Editor of Linux Journal, and pretends to be a Linux
guru in his spare time. He can be reached via email as info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/016/toc016.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	HTML Forms: Interacting with the Net
	Eric Kasten
	Elements of a Form
	FORM Markup Tag
	INPUT Tag
	SELECT Tag
	TEXTAREA Tag
	Assembling the Pieces
	Interacting with the Client
	Conclusion

	Linux Goes to Sea
	Randolph Bentson

	Introduction to Lisp-Stat
	Balasubramanian Narasimhan
	A Quick Tour
	Programming in Lisp-Stat
	A Simple Animation
	An object-oriented Programming Example
	Final Remarks
	Getting Lisp-Stat

	Linux in the Rugged Field
	Sid Hellman

	Linux Programing Hints
	Jim Shapiro
	A Monte Carlo Estimate Of pi
	Point In Polygon
	Summary
	Perl Resources

	PracTCL Programming Tips
	Stephen Uhler
	How to be a Pane in Tk
	What a Drag

	The Trade Shows
	Randolph Bentson
	Arnold Robbins
	Comdex and Internet World
	EAST COAST COMDEX
	What's Hot
	Editorializing
	THE INTERNET WORLD SHOW

	What's GNU
	Arnold Robbins
	Intellectual Property Rights
	Program Design
	Program Behavior
	Writing C Code
	Documenting Programs
	How to make releases
	What Makes A GNU Program Better?
	Summary
	Epilogue

	Sendmail: Theory and Practice
	Phil Hughes

	Letters to the Editor
	Various
	Monte Told Amy ...
	And We Have Content ...
	Can't Please Everyone
	The Final Vote ...

	ELF Released for Linux
	Michael K. Johnson
	Why do I care?
	Do I want to upgrade?
	This isn't wizardry?
	Update on Linux/Alpha

	Novice to Novice
	Dean Oisboid
	Interlude: The Agonies of Obsolescence
	Spreadsheets
	Text editors
	Emacs clones
	vi clones
	Other editors

	New Products
	LJ Staff
	Interactive UNIX Guide
	SEDIT and S/REXX for Linux
	Linux Internet Archives

	Memory Allocation
	Michael K. Johnson
	Memory Allocation Strategies
	Kmalloc
	Vmalloc
	get_free_pages
	Device initialization
	Memory initialization

